Created
May 11, 2017 16:00
-
-
Save jebyrnes/1c94a74ca73cd2bb9a2d4a5b9c80c768 to your computer and use it in GitHub Desktop.
Functions for calculating WAIC from a linear model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#from rethinking library for numerically stable log sums | |
log_sum_exp <- function (x) { | |
xmax <- max(x) | |
xsum <- sum(exp(x - xmax)) | |
xmax + log(xsum) | |
} | |
#function for WAIC from an LM | |
waic.lm <- function(mod, n.sims=1e3){ | |
mod_sims <- sim(mod, n.sims=n.sims) | |
mod_X <- model.matrix(mod) | |
mod_Y <- mod$fitted.values+mod$residuals | |
#generate distribution of observations | |
pred_sims <- apply(mod_sims@coef, 1, function(b) mod_X %*% b ) | |
# pred_sims_err <- sapply(1:nrow(pred_sims), | |
# function(i) rnorm(ncol(pred_sims), pred_sims[i,], mod_sims@sigma[i])) | |
#I hate nested loops, but it's expedient | |
ll <- sapply(1:ncol(pred_sims), | |
function(j){ | |
sapply(1:nrow(pred_sims), | |
function(i) dnorm(pred_sims[i,j], mod_Y[i], mod_sims@sigma[i], log=TRUE)) | |
}) | |
#get the things we'll need... | |
lppd <- apply(ll, 1, function(arow) log_sum_exp(arow) - log(length(arow))) | |
pWAIC <- apply(ll, 1, var) | |
-2*sum(lppd) + 2*sum(pWAIC) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment