Last active
October 23, 2023 09:21
-
-
Save jedypod/15b1cc4b1c6328a326df6179e800a683 to your computer and use it in GitHub Desktop.
Nuke blinkscript implementation of a simple image Transform operator. This blinkscript demonstrates pixel filter interpolation algorithms.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Nuke blinkscript implementation of a simple image Transform operator. | |
Demonstrates pixel filter interpolation algorithms. | |
The following pixel filters are implemented: | |
0 - Blackman-Harris : Similar to cubic, but better performance in high frequencies | |
1 - Lanczos4 : 2x2 lanczos windowed sinc function | |
2 - Lanczos6 : 3x3 lanczos windowed sinc function | |
3 - Cubic : (Bicubic interpolation) - a=0.0, b=0.0 | |
4 - Mitchell : (Bicubic interpolation) - a=1/3, b=1/3 | |
5 - Keys : Catmull-Rom (Bicubic interpolation) - a=0.5, b=0.0 | |
6 - Simon : (Bicubic interpolation) - a=0.75, b=0.0 | |
7 - Rifman : (Bicubic interpolation) - a=1.0, b=0.0 | |
8 - Parzen : (Bicubic interpolation) - a=0.0, b=1.0 | |
9 - Guassian : gaussian interpolation width=6 | |
10 - Sharp Guassian : gaussian interpolation width=4.5 | |
11- Bilinear : bilinear interpolation between 4 nearest pixels | |
12 - Impulse : Round to the nearest pixel. | |
--------------------- | |
References | |
Bernd Jähne - Digital Image Processing_ Concepts, Algorithms, and Scientific Applications (1997, Springer) - p284 | |
Wilhelm Burger, Mark James Burge - Principles of Digital Image Processing: Core Algorithms - (2009, Springer-Verlag London) - p220-224 | |
interpolation | |
Fletcher Dunn, Ian Parberry - 3D Math Primer for Graphics and Game Development, 2nd Edition (2011, A K Peters_CRC Press) - p660 | |
image reconstruction and filtering | |
http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction.html | |
Further reading on sampling theory and aliasing | |
http://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Further_Reading.html | |
Digital Image Processing by Rafael C. Gonzalez, Richard E. Woods | |
interpolation introduction p65 | |
bilinear: 4 nearest neighbors | |
bicubic: 16 nearest neighbors | |
p71 - distance measures: euclidean, city block (d4) distance, chessboard distance (d8) | |
D(p, q) = ((x - s)^2 + (y - t)^2)^0.5 | |
d4(p,q) = |x-s|+|y-t| | |
d8(p,q) = max(|x-s|, |y-t|) | |
p87 - geometric spatial transformations - matrixes | |
affine transformation represented by a 3x3 matrix: scale, rotation, translation, shear | |
categories of image processing: | |
intensity transformations | |
spatial filtering | |
frequency domain | |
p145 - fundamentals of spatial filtering | |
https://archive.org/embed/Lectures_on_Image_Processing | |
J. R. Parker - Algorithms for image processing and computer vision (2010, Wiley) | |
p253 - fourier transform | |
Bernd Jähne - Digital Image Processing_ Concepts, Algorithms, and Scientific Applications (1997, Springer) | |
p277 | |
p212 homogenous coordinates | |
http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/08_image_warps.pdf | |
https://www.nibcode.com/en/blog/1137/linear-algebra-and-digital-image-processing-part-III-affine-transformations | |
OpenImageIO Filter Algorithms | |
https://github.com/OpenImageIO/oiio/blob/master/src/libutil/filter.cpp | |
overview of sampling interpolation methods with discussion of ringing in constant values with lanczos | |
https://www.ipol.im/pub/art/2011/g_lmii/article.pdf | |
*/ | |
kernel Transform : ImageComputationKernel<ePixelWise> { | |
Image<eRead, eAccessRandom, eEdgeConstant> src; | |
Image<eWrite, eAccessPoint> dst; | |
param: | |
float2 translate; | |
float rotate; | |
float2 scale; | |
float2 skew; | |
float2 center; | |
bool invert; | |
int filter; | |
bool range_compress; | |
local: | |
float3x3 M; | |
float pi; | |
bool rcomp; | |
float weights[512]; // Array to hold lookup table of interpolation weights | |
int wlut_size; | |
int n; // filter size | |
// Multiply a float3 by a matrix3x3 | |
float3 mult_f3_f33( float3 src, float3x3 mtx) { | |
return float3(mtx[0][0] * src.x + mtx[0][1] * src.y + | |
mtx[0][2] * src.z, mtx[1][0] * src.x + mtx[1][1] * src.y + | |
mtx[1][2] * src.z, mtx[2][0] * src.x + mtx[2][1] * src.y + | |
mtx[2][2] * src.z); | |
} | |
void init() { | |
pi = 3.1415926535f; | |
float t = rotate*pi/180.0f; // rotation angle in radians | |
// Assemble affine transformation matrix | |
float3x3 R = float3x3( // rotation matrix | |
cos(t), -sin(t), 0.0f, | |
sin(t), cos(t), 0.0f, | |
0.0f, 0.0f, 1.0f); | |
float3x3 S = float3x3( // scale matrix | |
scale.x, 0.0f, 0.0f, | |
0.0f, scale.y, 0.0f, | |
0.0f, 0.0f, 1.0f); | |
float3x3 T = float3x3( // translation matrix | |
1.0f, 0.0f, translate.x, | |
0.0f, 1.0f, translate.y, | |
0.0f, 0.0f, 1.0f); | |
float3x3 SHX = float3x3( // skew x matrix | |
1.0f, skew.x, 0.0f, | |
0.0f, 1.0f, 0.0f, | |
0.0f, 0.0f, 1.0f); | |
float3x3 SHY = float3x3( // skew y matrix | |
1.0f, 0.0f, 0.0f, | |
skew.y, 1.0f, 0.0f, | |
0.0f, 0.0f, 1.0f); | |
// Combine all transforms into transformation matrix M | |
M = T*R*SHX*SHY*S; | |
// Only enable range compression if filter has negative lobes | |
rcomp = 0; | |
if (range_compress) { | |
if (filter == 1 || filter == 2 || filter == 5 || filter == 6 || filter == 7) { | |
rcomp = 1; | |
} | |
} | |
// Set filter size based on filter parameter | |
// size of pixel neighborhood = n*2+1 by n*2+1 | |
n = 2; // default size is 3x3 except the following... | |
if (filter == 0) n = 1; // Blackman-Harris = 2x2 | |
if (filter == 3) n = 1; // Cubic = 2x2 | |
if (filter == 2) n = 3; // Lanczos6 = 7x7 | |
if (filter == 9) n = 1; // Gaussian4 | |
// Pre-calculate interpolation weights and store them in a lookup table | |
wlut_size = 512; // Needs to match size of weights[] array | |
// Loop over all indices of weights | |
for (int i=0; i < wlut_size; i++) { | |
// Calc weight for position at weight | |
float x = float(i) * float(n) / float(wlut_size); | |
weights[i] = weight(x); | |
} | |
} | |
// Logarithmically compress values above 0.18. Matches OpenImageIO oiiotool rangecompress | |
// Using log2shaper as this function can still cause overshoots | |
float rangecompress(float x, bool inverse) { | |
float x1 = 0.18f; | |
float a = -0.54576885700225830078f; | |
float b = 0.18351669609546661377f; | |
float c = 284.3577880859375f; | |
float absx = fabs(x); | |
if (!inverse) { | |
return absx <= x1 ? x : (a + b * log(fabs(c * absx + 1.0f))) * sign(x); | |
} else { | |
if (absx <= x1) return x; | |
float e = exp((absx - a) / b); | |
float _x = (e - 1.0f) / c; | |
if (_x < x1) _x = (-e - 1.0f) / c; | |
return _x * sign(x); | |
} | |
} | |
// ACEScct log transform | |
float acescct(float x, bool inverse) { | |
if (inverse) { | |
if (x > 0.155251141552511f) { | |
return pow( 2.0f, x*17.52f - 9.72f); | |
} else { | |
return (x - 0.0729055341958355f) / 10.5402377416545f; | |
} | |
} else { | |
if (x <= 0.0078125f) { | |
return 10.5402377416545f * x + 0.0729055341958355f; | |
} else { | |
return (log2(x) + 9.72f) / 17.52f; | |
} | |
} | |
} | |
// Generic Log2 shaper | |
float log2shaper(float x, bool inverse) { | |
float max_exp = 2.0f; | |
float min_exp = -2.0f; | |
float mid_grey = 0.18f; | |
float cut = 0.008; | |
float slope = 1.0f/(log(2)*cut*(max_exp-min_exp)); | |
float offset = (log(cut/mid_grey)/log(2)-min_exp)/(max_exp-min_exp); | |
if (inverse) { | |
return x >= offset ? pow(2.0f, x*(max_exp-min_exp)+min_exp)*mid_grey : (x-offset)/slope+cut; | |
} else { | |
return x >= cut ? (log(x/mid_grey)/log(2)-min_exp)/(max_exp-min_exp) : slope*(x-cut)+offset; | |
} | |
} | |
// Bilinear Interpolation | |
float bilinear_filter(float x, float y, int k) { | |
int u = floor(x); | |
int v = floor(y); | |
float a = x-u; | |
float b = y-v; | |
float p1 = src(u, v, k); | |
float p2 = src(u+1, v, k); | |
float p3 = src(u, v+1, k); | |
float p4 = src(u+1, v+1, k); | |
float r1 = p1 + a*(p2-p1); | |
float r2 = p3 + a*(p4-p3); | |
float r3 = r1 + b*(r2-r1); | |
return r3; | |
} | |
// Gaussian interpolation https://renderman.pixar.com/resources/RenderMan_20/risOptions.html | |
float gaussian(float x, float w) { | |
x = fabs(x); | |
float xw = 6*x/w; | |
return x < w ? exp(-2*xw*xw) : 0.0f; | |
} | |
// Parameterized Cubic spline interpolation - https://www.desmos.com/calculator/il0lu3cnxr | |
float bicubic(float x, float a, float b, float n) { | |
x = fabs(x); | |
if (x > n) return 0.0f; | |
float x2 = x*x; | |
float x3 = x*x*x; | |
return x < 1.0f ? ((-6*a-9*b+12)*x3+(6*a+12*b-18)*x2-2*b+6)/6 : x < 2.0f ? ((-6*a-b)*x3+(30*a+6*b)*x2+(-48*a-12*b)*x+24*a+8*b)/6 : 0.0f; | |
} | |
// Catmull-Rom interpolation. Same as Keys (not used but included for posterity) | |
float catrom(float x) { | |
x = fabs(x); | |
float x2 = x * x; | |
float x3 = x * x2; | |
return (x >= 2.0f) ? 0.0f | |
: ((x < 1.0f) ? (3.0f * x3 - 5.0f * x2 + 2.0f)/2.0f | |
: (-x3 + 5.0f * x2 - 8.0f * x + 4.0f)/2.0f); | |
} | |
// Lanczos windowed sinc interpolation. | |
// Lanczos4 a=2, Lanczos6 a=3 | |
float lanczos(float x, float a) { | |
x = fabs(x); | |
if (x > a) return 0.0f; | |
if (x < 0.0001f) return 1.0f; | |
float pi_x = pi*x; | |
return a*(sin(pi_x)*(sin((pi_x)/a))/(pi_x*pi_x)); | |
} | |
// Blackman-Harris interpolation | |
float blackman_harris(float x) { | |
if (x < -1.0f || x > 1.0f) return 0.0f; | |
x /= 1.5f; | |
x = (x + 1.0f) * 0.5f; | |
const float a0 = 0.35875f; | |
const float a1 = -0.48829f; | |
const float a2 = 0.14128f; | |
const float a3 = 0.01168f; | |
float cos2pix = cos(2.0f * pi * x); | |
float cos4pix = 2.0f * cos2pix * cos2pix - 1.0f; | |
float cos6pix = cos2pix * (2.0f * cos4pix - 1.0f); | |
return a0 + a1 * cos2pix + a2 * cos4pix - a3 * cos6pix; | |
} | |
float lerp(float a, float b, float f) { // Linear interpolation between a and b given position f | |
return a + f * (b - a); | |
} | |
float get_weight(float x) { | |
// Calculate linear interpolation at float position x in lookup | |
float d = fabs(x)/n*wlut_size; | |
int d0 = floor(d); | |
int d1 = ceil(d); | |
return lerp(weights[d0], weights[d1], d-d0); | |
} | |
// Choose filter interpolation to weight value x | |
float weight(float x) { | |
if (filter == 0) { // Blackman-Harris | |
return blackman_harris(x); | |
} else if (filter == 1 || filter == 2) { // Lanczos | |
return lanczos(x, n); | |
} else if (filter == 3) { // Cubic | |
return bicubic(x, 0.0f, 0.0f, n); | |
} else if (filter == 4) { // Mitchell | |
return bicubic(x, 0.33333333f, 0.33333333f, n); | |
} else if (filter == 5) { // Keys or Catmull-Rom | |
return catrom(x); | |
} else if (filter == 6) { // Simon | |
return bicubic(x, 0.75f, 0.0f, n); | |
} else if (filter == 7) { // Rifman | |
return bicubic(x, 1.0f, 0.0f, n); | |
} else if (filter == 8) { // Parzen | |
return bicubic(x, 0.0f, 1.0f, n); | |
} else if (filter == 9) { // Gaussian | |
return gaussian(x, 6); | |
} else if (filter == 10) { // Sharp Gaussian | |
return gaussian(x, 4.25f); | |
} else { // Default | |
return blackman_harris(x); | |
} | |
} | |
// Sample pixel at continuous float position (x, y) in channel k | |
float sample(float x, float y, int k) { | |
int u0 = round(x); // nearest x | |
int v0 = round(y); // nearest y | |
// Normalization factor for lanczos & blackman-harris & gaussian filter windows | |
// These weighting functions do not sum to 1 and cause variations in constant input values | |
// We sum the weights and then normalize the value after to counteract this | |
bool normalize = (filter < 3 || filter == 9 || filter == 10); | |
float norm = 0.0f; | |
// Loop over neighboring pixels and return weighted sum of pixel values | |
float q = 0.0f; | |
for (int j = -n; j <= n; j++) { | |
int v = v0 + j; | |
float p = 0.0f; | |
float row_norm = 0.0f; | |
for (int i = -n; i <= n; i++) { | |
int u = u0 + i; | |
float c = src(u, v, k); | |
// float w = weight(u-x); | |
float w = get_weight(u-x); | |
if (rcomp) c = log2shaper(c, 0); | |
p += c * w; | |
if (normalize) row_norm += w; | |
} | |
// float w = weight(v-y); | |
float w = get_weight(v-y); | |
q += p * w; | |
if (normalize) norm += row_norm * w; | |
} | |
if (normalize) q /= norm; | |
if (rcomp) return log2shaper(q, 1); | |
return q; | |
} | |
void process(int2 pos) { | |
/* | |
For all pixels of destination: | |
- Find continuous float source pixel location given transformation matrix | |
- Interpolate pixel value given pixel filter weighting function | |
- Write interpolated value to destination | |
*/ | |
float x, y, dx, dy; | |
// Current pixel location | |
x = float(pos.x+0.5f); | |
y = float(pos.y+0.5f); | |
// Translate to center of transform | |
dx = x - center.x; | |
dy = y - center.y; | |
// Multiply by transformation matrix | |
float3 result; | |
if (invert) { | |
result = mult_f3_f33(float3(dx, dy, 1.0f), M); | |
} else { | |
result = mult_f3_f33(float3(dx, dy, 1.0f), M.invert()); | |
} | |
// Translate back to origin | |
dx = result.x + center.x-0.5f; | |
dy = result.y + center.y-0.5f; | |
// Write interpolated pixel value from source location (dx, dy) | |
for (int k = 0; k <=3; k++) { | |
if (filter < 11) { | |
dst(k) = sample(dx, dy, k); | |
} else if (filter == 11) { // Bilinear interpolation | |
dst(k) = bilinear_filter(dx, dy, k); | |
} else if (filter == 12) { // Impulse | |
dst(k) = src(round(dx), round(dy), k); | |
} | |
} | |
} | |
}; |
Hey Miles! Thanks for the flag, yes it looks like the blinkscript no longer compiles on Nuke 13. I did a quick test thinking it might be the interpolation weights precalculated lut, but it looks like it's something else. I'll do some more testing and let you know what I come up with... If only Blinkscript provided some more useful information besides "Could not compile" :/ makes it hard to troubleshoot
Thanks Jed! Completely agree on the feedback when things go wrong. Just a flag for the line that broke the compile would go a long way.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Have you had any issues running this on Nuke 13?