Last active
September 18, 2020 18:02
-
-
Save jeff303/b748de7230002d233c5a1691cd2a3252 to your computer and use it in GitHub Desktop.
A simple spark-shell session showing how to do useful things
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// some useful imports | |
import org.apache.spark.sql._ | |
import org.apache.spark.sql.types._ | |
import org.apache.spark.sql.functions._ | |
// start with some very simple JSON | |
val simpleJsonStr = """{"foo": 42, "bar": "baz"}""" | |
// just read; schema will be inferred | |
val simpleDf = spark.read.json(Seq(simpleJsonStr).toDS()) | |
// print the DataFrame contents | |
simpleDf.show() | |
// print the schema | |
simpleDf.printSchema() | |
// define a simple schema | |
val simpleSchema = StructType( | |
StructField("foo", IntegerType, true) :: | |
StructField("bar", StringType, true) :: | |
Nil) | |
// read the same JSON using this schema | |
val simpleDf = spark.read.schema(simpleSchema).json(Seq(simpleJsonStr).toDS()) | |
// print the schema again to see the updated types | |
simpleDf.printSchema() | |
// that same schema can be represented as JSON | |
val schemaJson = """{ | |
"type" : "struct", | |
"fields" : [ { | |
"name" : "foo", | |
"type" : "integer", | |
"nullable" : true, | |
"metadata" : { } | |
}, { | |
"name" : "bar", | |
"type" : "string", | |
"nullable" : true, | |
"metadata" : { } | |
} ] | |
}""" | |
val simpleSchemaFromJson = DataType.fromJson(schemaJson).asInstanceOf[StructType] | |
// or Spark DDL | |
val simpleSchemaFromDDL = DataType.fromDDL("foo INTEGER, bar STRING").asInstanceOf[StructType] | |
// create a DataFrame from this schema, which has no rows | |
val emptyDf = spark.createDataFrame(sc.emptyRDD[Row], simpleSchema) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment