Created
February 27, 2019 12:10
-
-
Save jeffeaton/f1c686b1d4c3cb50bac6d0cdca846c47 to your computer and use it in GitHub Desktop.
working example of shape constrained additive models from scam package in Stan
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(scam) | |
library(rstan) | |
library(ggplot2) | |
set.seed(0) | |
n <- 200 | |
x1 <- runif(n)*6-3 | |
f1 <- 3*exp(-x1^2) # unconstrained term | |
f1 <- (f1-min(f1))/(max(f1)-min(f1)) # function scaled to have range [0,1] | |
x2 <- runif(n)*4-1; | |
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth | |
f2 <- (f2-min(f2))/(max(f2)-min(f2)) # function scaled to have range [0,1] | |
f <- f1+f2 | |
y <- f+rnorm(n)*0.1 | |
dat <- data.frame(x1=x1,x2=x2,y=y) | |
b <- scam(y ~ s(x1, k=15, bs="cr", m=2) + s(x2, k=25, bs="mpi", m=2), | |
family = gaussian(link="identity"), data=dat, not.exp=FALSE) | |
plot(b, pages=1) | |
#' fit in stan | |
sm1 <- smoothCon(s(x1, k= 15, bs = "cr"), data = dat, absorb.cons = TRUE, scale.penalty = TRUE)[[1]] | |
sm2 <- smoothCon(s(x2, k= 25, bs = "mpi"), data = dat, absorb.cons = TRUE, scale.penalty = TRUE)[[1]] # absorb.cons = TRUE does nothing for constrained smooth | |
code <- " | |
data { | |
int<lower=1> N; // number of observations | |
vector[N] Y; // response variable | |
// data of smooth s(x1) | |
int nk_s1; // number of knots | |
int rank_s1; // rank of smoother | |
matrix[N, nk_s1] X_s1; // model matrix | |
matrix[nk_s1, nk_s1] S_s1; // penalty matrix | |
// data of smooth s(x2) | |
int nk_s2; // number of knots | |
int rank_s2; // rank of smoother | |
matrix[N, nk_s2] X_s2; // model matrix | |
matrix[nk_s2, nk_s2] S_s2; // penalty matrix | |
} | |
parameters { | |
real beta0; // intercept | |
// parameters for smooth s(x1) | |
vector[nk_s1] beta_s1; | |
real<lower=0> sd_s1; | |
// parameters for smooth s(x2) | |
vector[nk_s2] beta_s2; | |
real<lower=0> sd_s2; | |
// residual standard deviation | |
real<lower=0> sigma; // residual SD | |
} | |
transformed parameters { | |
vector[nk_s2] beta_tilde_s2 = exp(beta_s2); | |
} | |
model { | |
vector[N] mu = beta0 + X_s1 * beta_s1 + X_s2 * beta_tilde_s2; | |
// priors (taken from brms defaults) | |
target += student_t_lpdf(beta0 | 3, 0, 10); | |
// penalty for s(x1) | |
target += -rank_s1 * log(sd_s1) - 1 / (2 * sd_s1 * sd_s1) * quad_form(S_s1, beta_s1); | |
target += student_t_lpdf(sd_s1 | 3, 0, 10); | |
// penalty for s(x2) | |
target += -rank_s2 * log(sd_s2) - 1 / (2 * sd_s2 * sd_s2) * quad_form(S_s2, beta_s2); | |
target += student_t_lpdf(sd_s2 | 3, 0, 10); | |
target += student_t_lpdf(sigma | 3, 0, 10); | |
// likelihood | |
target += normal_lpdf(Y | mu, sigma); | |
} | |
" | |
sdata <- list(N = nrow(dat), | |
Y = dat$y, | |
## | |
## sm1 | |
nk_s1 = ncol(sm1$X), | |
rank_s1 = sum(sm1$rank), | |
X_s1 = sm1$X, | |
S_s1 = Reduce("+", sm1$S), | |
## | |
## sm1 | |
nk_s2 = ncol(sm2$X), | |
rank_s2 = sum(sm2$rank), | |
X_s2 = sm2$X, | |
S_s2 = Reduce("+", sm2$S)) | |
fit <- stan(model_code = code, data = sdata, control = list(adapt_delta = 0.95)) | |
x1_pred <- data.frame(x1 = seq(-3, 3, 0.1)) | |
X1pred <- PredictMat(sm1, x1_pred) | |
s1pred <- X1pred %*% t(extract(fit)$beta_s1) | |
x1_pred$mean = rowMeans(s1pred) | |
x1_pred$median = apply(s1pred, 1, median) | |
x1_pred$lower = apply(s1pred, 1, quantile, 0.015) | |
x1_pred$upper = apply(s1pred, 1, quantile, 0.975) | |
ggplot(x1_pred, aes(x1)) + | |
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.3, fill = 1, color = NA) + | |
geom_line(aes(y = mean), color = 1, size = 1) + | |
geom_line(aes(y = median), color = 4, size = 1) | |
x2_pred <- data.frame(x2 = seq(-1, 3, 0.1)) | |
X2pred <- PredictMat(sm2, x2_pred)[ ,-1] | |
s2pred <- X2pred %*% t(extract(fit)$beta_tilde_s2) | |
x2_pred$mean = rowMeans(s2pred) | |
x2_pred$median = apply(s2pred, 1, median) | |
x2_pred$lower = apply(s2pred, 1, quantile, 0.025) | |
x2_pred$upper = apply(s2pred, 1, quantile, 0.975) | |
ggplot(x2_pred, aes(x2)) + | |
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.3, fill = 1, color = NA) + | |
geom_line(aes(y = mean), color = 2, size = 1) + | |
geom_line(aes(y = median), color = 4, size = 1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Some notes:
?scam
brms
andrstanarm
won't work with out of the box due to thebrms
doesn't work because it doesn't account for the transformations(x2)
plot. Need to review source code forscam
. Answer might be in the updated script in the google list post.