Created
September 16, 2014 22:37
-
-
Save jeffmcfadden/a6c789424cd02ef3ad4a to your computer and use it in GitHub Desktop.
Geodesic Distance in PHP
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function HowFar( $p1, $p2 ){ | |
// WGS-84 Ellipsoid | |
$a = 6378137; | |
$b = 6356752.3142; | |
$f = 1/289.257223563; | |
$L = $p2->GetLong() - $p1->GetLong(); | |
$U1 = atan( ( 1 - $f ) * tan( $p1->GetLat() ) ); | |
$U2 = atan( ( 1 - $f ) * tan( $p2->GetLat() ) ); | |
//print “L:” . $L . “\n”; | |
//print “U1:” . $U1 . “\n”; | |
//print “U2:” . $U2 . “\n”; | |
$sinU1 = sin( $U1 ); | |
$cosU1 = cos( $U1 ); | |
//print “sinU1:” . $sinU1 . “\n”; | |
//print “cosU1:” . $cosU1 . “\n”; | |
$sinU2 = sin( $U2 ); | |
$cosU2 = cos( $U2 ); | |
//print “sinU2:” . $sinU2 . “\n”; | |
//print “cosU2:” . $cosU2 . “\n”; | |
$lambda = $L; | |
$lambdaP = 2 * pi(); | |
$iterLimit = 20; | |
while( abs( $lambda - $lambdaP ) > 0000000000001 && –$iterLimit > 0 ){ | |
$sinLambda = sin( $lambda ); | |
//print “sinLambda:” . $sinLambda . “\n”; | |
$cosLambda = cos( $lambda ); | |
//print “cosLambda:” . $cosLambda . “\n”; | |
$sinSigma = sqrt( ( $cosU2 * $sinLambda ) * ( $cosU2 * $sinLambda ) + ( $cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda ) * ( $cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda ) ); | |
//print “sinSigma:” . $sinSigma . “\n”; | |
if( $sinSigma == 0 ){ | |
return 0; //co-incident points | |
} | |
$cosSigma = $sinU1 * $sinU2 + $cosU1 * $cosU2 * $cosLambda; | |
//print “cosSigma:” . $cosSigma . “\n”; | |
$sigma = atan2( $sinSigma, $cosSigma ); | |
//print “sigma:” . $sigma . “\n”; | |
$sinAlpha = $cosU1 * $cosU2 * $sinLambda / $sinSigma; | |
//print “sinAlpha:” . $sinAlpha . “\n”; | |
$cosSqAlpha = 1 - $sinAlpha * $sinAlpha; | |
//print “cosSqAlpha:” . $cosSqAlpha . “\n”; | |
$cos2SigmaM = $cosSigma - 2 * $sinU1 * $sinU2 / $cosSqAlpha; | |
//print “cos2SigmaM:” . $cos2SigmaM . “\n”; | |
if( !is_numeric( $cosSigmaM ) ){ | |
$cosSigmaM = 0; // Equatorial line | |
} | |
$C = $f/16 * $cosSqAlpha * ( 4 + $f * ( 4 - 3 * $cosSqAlpha ) ); | |
$lambdaP = $lambda; | |
$lambda = $L + ( 1 - $C ) * $f * $sinAlpha * ( $sigma + $C * $sinSigma * ( $cos2SigmaM + $C * $cosSigma * ( -1 + 2 * $cos2SigmaM * $cos2SigmaM ) ) ); | |
} | |
if( $iterLimit == 0 ){ | |
return false; | |
} | |
$uSq = $cosSqAlpha * ( $a * $a - $b * $b ) / ( $b * $b ); | |
//print “uSq:” . $uSq . “\n”; | |
$A = 1 + $uSq / 16384 * ( 4096 + $uSq * ( -768 + $uSq * ( 320 - 175 * $uSq ) ) ); | |
//print “A:” . $A. “\n”; | |
$B = $uSq / 1024 * ( 256 + $uSq * ( -128 + $uSq * ( 74 - 47 * $uSq ) ) ); | |
//print “B:” . $B. “\n”; | |
$deltaSigma = $B * $sinSigma * ( $cos2SigmaM + $B / 4 * ( $cosSigma * ( -1 + 2 * $cos2SigmaM * $cos2SigmaM ) - | |
$B / 6 * $cos2SigmaM * ( -3 + 4 * $sinSigma * $sinSigma ) * ( -3 + 4 * $cos2SigmaM * $cos2SigmaM ) ) ); | |
$s = $b * $A * ( $sigma - $deltaSigma ); | |
return $s; | |
} | |
class CPoint{ | |
var $m_nLat; | |
var $m_nLong; | |
var $m_sTs; | |
function CPoint( $lat, $long, $ts = “” ){ | |
$this->m_nLat = $lat; | |
$this->m_nLong = $long; | |
$this->m_sTs = strtotime( $ts ); | |
} | |
function GetLat(){ | |
return $this->m_nLat; | |
} | |
function GetLong(){ | |
return $this->m_nLong; | |
} | |
function GetTs(){ | |
return $this->m_sTs; | |
} | |
function Degrees2Radian(){ | |
$this->m_nLat = deg2rad( $this->m_nLat ); | |
$this->m_nLong = deg2rad( $this->m_nLong ); | |
} | |
} | |
$Start = new CPoint( 33.399518681, -115.4098444488 ); | |
$Start->Degrees2Radian(); | |
$End = new CPoint( 33.399843764, -115.4054863956 ); | |
$End->Degrees2Radian(); | |
print HowFar( $Start, $End ); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment