Last active
June 24, 2025 08:52
-
-
Save jeffra/b5e80466b4c86be00ea3b6f130fb7a36 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| import torch.distributed as dist | |
| import time | |
| import argparse | |
| import os | |
| import deepspeed | |
| TRIALS = 5 | |
| # 6GB | |
| N = 500000 | |
| M = 500 * 6 | |
| def timed_allreduce(mat): | |
| torch.cuda.synchronize() | |
| pre = time.perf_counter() | |
| dist.all_reduce(mat) | |
| #print('ignore me', mat[0][0]) # required due to lazy evaluation | |
| torch.cuda.synchronize() | |
| duration = time.perf_counter() - pre | |
| #print("duration: %f sec" % duration) | |
| tput = ((M*N*4*2)/duration)*8 | |
| #print("algo throughput: %f bps, %f Gbps" % (tput, tput/1e9)) | |
| size = M * N * 4 | |
| n = dist.get_world_size() | |
| busbw = (size / duration) * (2 * (n - 1) / n) * 8 | |
| #print("busbw: %f Gbps" % (busbw / 1e9)) | |
| return tput, busbw | |
| def run(local_rank): | |
| global_rank = dist.get_rank() | |
| if global_rank == 0: | |
| print(global_rank, "data size:", M*N*4/1e9, "GB") | |
| mat = torch.rand(N, M, dtype=torch.float32).cuda(local_rank) | |
| tputs = [] | |
| busbws = [] | |
| for trial in range(TRIALS): | |
| tput, busbw = timed_allreduce(mat) | |
| if trial > 2: | |
| tputs.append(tput) | |
| busbws.append(busbw) | |
| local_avg = sum(tputs) / len(tputs) | |
| local_avg_bb = sum(busbws) / len(busbws) | |
| t = torch.tensor([local_avg/1e9, local_avg_bb/1e9], device='cuda') | |
| dist.all_reduce(t) | |
| tput_avg = t[0] / dist.get_world_size() | |
| busbw_avg = t[1] / dist.get_world_size() | |
| if dist.get_rank() == 0: | |
| print('tput_avg (Gbps):', tput_avg.item(), 'busbw_avg (Gbps):', busbw_avg.item()) | |
| dist.barrier() | |
| def init_processes(local_rank, fn, backend='nccl'): | |
| deepspeed.init_distributed(dist_backend=backend) | |
| local_rank = int(os.environ['LOCAL_RANK']) | |
| torch.cuda.set_device(local_rank) | |
| fn(local_rank) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--local_rank", type=int) | |
| args = parser.parse_args() | |
| rank = args.local_rank | |
| #print("local_rank: %d" % rank) | |
| init_processes(local_rank=rank, fn=run) |
Author
Launch via
deepspeed all_reduce_bench_v2.pyYou can optionally pass in
--num_gpus <N>or other parameters to the deepspeed launcher to select what gpus/nodes to launch on.
tput = ((M*N*4*2)/duration)*8@jeffra why should size multiply two when calculate algorithm bandwidth?
refer this nvidia link https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
algbw = S/t
refer deepspeed decorators that statistic methods
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment



Launch via
deepspeed all_reduce_bench_v2.pyYou can optionally pass in
--num_gpus <N>or other parameters to the deepspeed launcher to select what gpus/nodes to launch on.