Created
March 12, 2012 10:53
-
-
Save jeje/2021145 to your computer and use it in GitHub Desktop.
Modified DS3231 library for compatibility with Arduino 1.0
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// DS3231 Class is by Seeed Technology Inc(http://www.seeedstudio.com) and used | |
// in Seeeduino Stalker v2.1 for battery management(MCU power saving mode) | |
// & to generate timestamp for data logging. DateTime Class is a modified | |
// version supporting day-of-week. | |
// Original DateTime Class and its utility code is by Jean-Claude Wippler at JeeLabs | |
// http://jeelabs.net/projects/cafe/wiki/RTClib | |
// Released under MIT License http://opensource.org/licenses/mit-license.php | |
#include <Wire.h> | |
#include <avr/pgmspace.h> | |
#include "DS3231.h" | |
#include <Arduino.h> | |
#define SECONDS_PER_DAY 86400L | |
//////////////////////////////////////////////////////////////////////////////// | |
// utility code, some of this could be exposed in the DateTime API if needed | |
static uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 }; | |
// number of days since 2000/01/01, valid for 2001..2099 | |
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) { | |
if (y >= 2000) | |
y -= 2000; | |
uint16_t days = d; | |
for (uint8_t i = 1; i < m; ++i) | |
days += pgm_read_byte(daysInMonth + i - 1); | |
if (m > 2 && y % 4 == 0) | |
++days; | |
return days + 365 * y + (y + 3) / 4 - 1; | |
} | |
static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) { | |
return ((days * 24L + h) * 60 + m) * 60 + s; | |
} | |
static uint8_t conv2d(const char* p) { | |
uint8_t v = 0; | |
if ('0' <= *p && *p <= '9') | |
v = *p - '0'; | |
return 10 * v + *++p - '0'; | |
} | |
//////////////////////////////////////////////////////////////////////////////// | |
// DateTime implementation - ignores time zones and DST changes | |
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second | |
DateTime::DateTime (long t) { | |
ss = t % 60; | |
t /= 60; | |
mm = t % 60; | |
t /= 60; | |
hh = t % 24; | |
uint16_t days = t / 24; | |
uint8_t leap; | |
for (yOff = 0; ; ++yOff) { | |
leap = yOff % 4 == 0; | |
if (days < 365 + leap) | |
break; | |
days -= 365 + leap; | |
} | |
for (m = 1; ; ++m) { | |
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1); | |
if (leap && m == 2) | |
++daysPerMonth; | |
if (days < daysPerMonth) | |
break; | |
days -= daysPerMonth; | |
} | |
d = days + 1; | |
} | |
DateTime::DateTime (uint16_t year, uint8_t month, uint8_t date, uint8_t hour, uint8_t min, uint8_t sec, uint8_t wd) { | |
if (year >= 2000) | |
year -= 2000; | |
yOff = year; | |
m = month; | |
d = date; | |
hh = hour; | |
mm = min; | |
ss = sec; | |
wday = wd; | |
} | |
// A convenient constructor for using "the compiler's time": | |
// DateTime now (__DATE__, __TIME__); | |
// NOTE: using PSTR would further reduce the RAM footprint | |
DateTime::DateTime (const char* date, const char* time) { | |
// sample input: date = "Dec 26 2009", time = "12:34:56" | |
yOff = conv2d(date + 9); | |
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec | |
switch (date[0]) { | |
case 'J': m = date[1] == 'a' ? 1 : m = date[2] == 'n' ? 6 : 7; break; | |
case 'F': m = 2; break; | |
case 'A': m = date[2] == 'r' ? 4 : 8; break; | |
case 'M': m = date[2] == 'r' ? 3 : 5; break; | |
case 'S': m = 9; break; | |
case 'O': m = 10; break; | |
case 'N': m = 11; break; | |
case 'D': m = 12; break; | |
} | |
d = conv2d(date + 4); | |
hh = conv2d(time); | |
mm = conv2d(time + 3); | |
ss = conv2d(time + 6); | |
} | |
long DateTime::get() const { | |
uint16_t days = date2days(yOff, m, d); | |
return time2long(days, hh, mm, ss); | |
} | |
static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); } | |
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); } | |
//////////////////////////////////////////////////////////////////////////////// | |
// RTC DS3231 implementation | |
uint8_t DS3231::readRegister(uint8_t regaddress) | |
{ | |
Wire.beginTransmission(DS3231_ADDRESS); | |
Wire.write(regaddress); | |
Wire.endTransmission(); | |
Wire.requestFrom(DS3231_ADDRESS, 1); | |
return Wire.read(); | |
} | |
void DS3231::writeRegister(uint8_t regaddress,uint8_t value) | |
{ | |
Wire.beginTransmission(DS3231_ADDRESS); | |
Wire.write(regaddress); | |
Wire.write(value); | |
Wire.endTransmission(); | |
} | |
uint8_t DS3231::begin(void) { | |
unsigned char ctReg=0; | |
ctReg |= 0b00011100; | |
writeRegister(DS3231_CONTROL_REG, ctReg); //CONTROL Register Address | |
delay(10); | |
// set the clock to 24hr format | |
uint8_t hrReg = readRegister(DS3231_HOUR_REG); | |
hrReg &= 0b10111111; | |
writeRegister(DS3231_HOUR_REG, hrReg); | |
delay(10); | |
return 1; | |
} | |
//Adjust the time-date specified in DateTime format | |
//writing any non-existent time-data may interfere with normal operation of the RTC | |
void DS3231::adjust(const DateTime& dt) { | |
Wire.beginTransmission(DS3231_ADDRESS); | |
Wire.write((uint8_t) DS3231_SEC_REG); //beginning from SEC Register address | |
Wire.write(bin2bcd(dt.second())); | |
Wire.write(bin2bcd(dt.minute())); | |
Wire.write(bin2bcd((dt.hour()) & 0b10111111)); //Make sure clock is still 24 Hour | |
Wire.write(dt.dayOfWeek()); | |
Wire.write(bin2bcd(dt.date())); | |
Wire.write(bin2bcd(dt.month())); | |
Wire.write(bin2bcd(dt.year() - 2000)); | |
Wire.endTransmission(); | |
} | |
//Read the current time-date and return it in DateTime format | |
DateTime DS3231::now() { | |
Wire.beginTransmission(DS3231_ADDRESS); | |
Wire.write((uint8_t) 0x00); | |
Wire.endTransmission(); | |
Wire.requestFrom(DS3231_ADDRESS, 8); | |
uint8_t ss = bcd2bin(Wire.read()); | |
uint8_t mm = bcd2bin(Wire.read()); | |
uint8_t hrreg = Wire.read(); | |
uint8_t hh = bcd2bin((hrreg & ~0b11000000)); //Ignore 24 Hour bit | |
uint8_t wd = Wire.read(); | |
uint8_t d = bcd2bin(Wire.read()); | |
uint8_t m = bcd2bin(Wire.read()); | |
uint16_t y = bcd2bin(Wire.read()) + 2000; | |
return DateTime (y, m, d, hh, mm, ss, wd); | |
} | |
//Enable periodic interrupt at /INT pin. Supports only the level interrupt | |
//for consistency with other /INT interrupts. All interrupts works like single-shot counter | |
//Use refreshINTA() to re-enable interrupt. | |
void DS3231::enableInterrupts(uint8_t periodicity) | |
{ | |
unsigned char ctReg=0; | |
ctReg |= 0b00011101; | |
writeRegister(DS3231_CONTROL_REG, ctReg); //CONTROL Register Address | |
switch(periodicity) | |
{ | |
case EverySecond: | |
writeRegister(DS3231_AL1SEC_REG, 0b10000000 ); //set AM1 | |
writeRegister(DS3231_AL1MIN_REG, 0b10000000 ); //set AM2 | |
writeRegister(DS3231_AL1HOUR_REG, 0b10000000 ); //set AM3 | |
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4 | |
break; | |
case EveryMinute: | |
writeRegister(DS3231_AL1SEC_REG, 0b00000000 ); //Clr AM1 | |
writeRegister(DS3231_AL1MIN_REG, 0b10000000 ); //set AM2 | |
writeRegister(DS3231_AL1HOUR_REG, 0b10000000 ); //set AM3 | |
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4 | |
break; | |
case EveryHour: | |
writeRegister(DS3231_AL1SEC_REG, 0b00000000 ); //Clr AM1 | |
writeRegister(DS3231_AL1MIN_REG, 0b00000000 ); //Clr AM2 | |
writeRegister(DS3231_AL1HOUR_REG, 0b10000000 ); //Set AM3 | |
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4 | |
break; | |
} | |
} | |
//Enable HH/MM/SS interrupt on /INTA pin. All interrupts works like single-shot counter | |
void DS3231::enableInterrupts(uint8_t hh24, uint8_t mm, uint8_t ss) | |
{ | |
unsigned char ctReg=0; | |
ctReg |= 0b00011101; | |
writeRegister(DS3231_CONTROL_REG, ctReg); //CONTROL Register Address | |
writeRegister(DS3231_AL1SEC_REG, 0b00000000 | bin2bcd(ss) ); //Clr AM1 | |
writeRegister(DS3231_AL1MIN_REG, 0b00000000 | bin2bcd(mm)); //Clr AM2 | |
writeRegister(DS3231_AL1HOUR_REG, (0b00000000 | (bin2bcd(hh24) & 0b10111111))); //Clr AM3 | |
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4 | |
} | |
//Disable Interrupts. This is equivalent to begin() method. | |
void DS3231::disableInterrupts() | |
{ | |
begin(); //Restore to initial value. | |
} | |
//Clears the interrrupt flag in status register. | |
//This is equivalent to preparing the DS3231 /INT pin to high for MCU to get ready for recognizing the next INT0 interrupt | |
void DS3231::clearINTStatus() | |
{ | |
// Clear interrupt flag | |
uint8_t statusReg = readRegister(DS3231_STATUS_REG); | |
statusReg &= 0b11111110; | |
writeRegister(DS3231_STATUS_REG, statusReg); | |
} | |
//force temperature sampling and converting to registers. If this function is not used the temperature is sampled once 64 Sec. | |
void DS3231::convertTemperature() | |
{ | |
// Set CONV | |
uint8_t ctReg = readRegister(DS3231_CONTROL_REG); | |
ctReg |= 0b00100000; | |
writeRegister(DS3231_CONTROL_REG,ctReg); | |
//wait until CONV is cleared. Indicates new temperature value is available in register. | |
do | |
{ | |
//do nothing | |
} while ((readRegister(DS3231_CONTROL_REG) & 0b00100000) == 0b00100000 ); | |
} | |
//Read the temperature value from the register and convert it into float (deg C) | |
float DS3231::getTemperature() | |
{ | |
int temperatureCelsius; | |
float fTemperatureCelsius; | |
uint8_t tUBYTE = readRegister(DS3231_TMP_UP_REG); //Two's complement form | |
uint8_t tLRBYTE = readRegister(DS3231_TMP_LOW_REG); //Fractional part | |
if(tUBYTE & 0b10000000) //check if -ve number | |
{ | |
tUBYTE ^= 0b11111111; | |
tUBYTE += 0x1; | |
fTemperatureCelsius = tUBYTE + ((tLRBYTE >> 6) * 0.25); | |
fTemperatureCelsius = fTemperatureCelsius * -1; | |
} | |
else | |
{ | |
fTemperatureCelsius = tUBYTE + ((tLRBYTE >> 6) * 0.25); | |
} | |
return (fTemperatureCelsius); | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment