Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save jelber2/f22c24442c34f872d8ebf073ad721476 to your computer and use it in GitHub Desktop.
Save jelber2/f22c24442c34f872d8ebf073ad721476 to your computer and use it in GitHub Desktop.
Makes an animated plot of read quality and read length density contours over time for Nanopore Dorado basecalled, indexed BAM files
# new in revision 2, multithreaded support - up to twice as fast as single-threaded, revision 1
# invoke with:
# julia --threads 16 Plot_Animated_Nanopore_Quality_x_Length_2D_Contours.jl --input_file test.bam --fps 0.7 --output_file test.gif
# but need a lot of threads (up to 16, above 16 threads, get saturation in cores vs. time plot)
using XAM
using ArgParse
using DataFrames
using Dates
using Statistics
using Base.MathConstants
using StatsBase
using StatsPlots
using KernelDensity
using Base.Threads
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--input_file", "-i"
help = "Path to the input BAM file"
required = true
"--fps", "-f"
help = "Frames per second for the animation (try maybe 0.35)"
arg_type = Float64
required = true
"--output_file", "-o"
help = "Output file name for the animation (try output.gif)"
required = true
end
return parse_args(s)
end
function get_BAM_records(input_file::String)
println()
println("Reading BAM Index for preallocating df size.")
input_file_index = string(input_file, ".bai")
try
total_records = XAM.BAM.BAI(input_file_index).n_no_coors
catch e
println("Please use samtools index as $input_file_index is not available in the same directory as $input_file.")
println()
end
total_records = XAM.BAM.BAI(input_file_index).n_no_coors
println("Total records in the BAM file: $total_records")
df = DataFrame(col1=Vector{Int}(undef, total_records), col2=Vector{Any}(undef, total_records), col3=Vector{Int}(undef, total_records))
reader = open(BAM.Reader, input_file)
record = BAM.Record()
counter = Atomic{Int}(0)
reader_lock = ReentrantLock()
println()
println("Reading BAM records for adding to df.")
Threads.@threads for i in 1:total_records
local_record = BAM.Record()
lock(reader_lock)
read!(reader, local_record)
unlock(reader_lock)
df.col1[i] = Int(round(-10*log10(sum(y->10^(Int(Char(y))/-10), BAM.quality(local_record))/length(BAM.quality(local_record))), RoundNearestTiesUp))
df.col2[i] = values(local_record)[7]
df.col3[i] = BAM.seqlength(local_record)
atomic_add!(counter, 1)
print("\rRead $(counter[]) BAM records.")
flush(stdout)
end
println()
println("Done reading BAM records for adding to df.")
close(reader)
return df
end
function process_BAM_records(df::DataFrame)
println("Begin plotting.")
# Read the data
ez1_orig = df
# Convert the second column to DateTime
ez1_orig.col2 = [DateTime(split(dt, "+")[1], "yyyy-mm-ddTHH:MM:SS.sss") for dt in ez1_orig.col2]
# Convert the first datetime to the start of the day
start_time = floor(ez1_orig.col2[1], Day)
# Create a sequence of times from the start of the day to the end of the day, with intervals of 15 minutes
intervals = start_time:Hour(1):floor(maximum(ez1_orig.col2), Day) + Day(1) - Minute(1)
# Create a new column named interval in ez1_orig to store the assigned intervals
ez1_orig.interval = similar(ez1_orig.col2, DateTime)
# Assign each datetime in ez1_orig.Column2 to the nearest interval
for i in 1:nrow(ez1_orig)
index = searchsorted(intervals, ez1_orig.col2[i]).stop
if index == 0
ez1_orig.interval[i] = intervals[1]
elseif index > 1 && (ez1_orig.col2[i] - intervals[index-1]) < (intervals[index] - ez1_orig.col2[i])
ez1_orig.interval[i] = intervals[index-1]
else
ez1_orig.interval[i] = intervals[index]
end
end
sort!(ez1_orig, :interval)
ez1_orig.col3 = log10.(ez1_orig.col3)
# Create an empty plot
plt = plot(xlim = (0, 40), ylim = (0,6),
title = "Hourly Hourly Read Quality by Length", xlabel = "Average Read Quality Phred Score", ylabel = "Read Length Bases",
size=(800,600), legend=true)
# Assuming your DataFrame is named 'ez1_orig'
result = combine(groupby(ez1_orig, :interval)) do subdf
x = subdf.col1
y = subdf.col3
xmin, xmax = 0, 40
ymin, ymax = 0, maximum(6) # Adjust the range for col3 based on your data
# Perform 2D KDE
kde_data = kde((x, y); boundary=((xmin, xmax), (ymin, ymax)), npoints=(100, 100))
return kde_data
end
# Create the animation
anim = @animate for i in 1:nrow(result)
animate_density!(plt, result, i, ez1_orig)
end
end
# Define the animation function
function animate_density!(plt, result, frame, ez1_orig)
interval = result.interval[frame]
row = result[frame, :]
plot(plt, row.x1,
title = "\"Hourly\" Avg Read Qual by Length, Interval $interval",
xlims = (0, 40), ylims = (0, 6), xlabel = "Average Read Quality Phred Score",
ylabel = "Read Length Bases", yticks=([1, 2, 3, 4, 5, 6], ["10", "100", "1000", "10000", "100000", "1000000"]))
end
function main()
parsed_args = parse_commandline()
input_file = parsed_args["input_file"]
fps = parsed_args["fps"]
output_file = parsed_args["output_file"]
df = get_BAM_records(input_file)
anim = process_BAM_records(df)
# Save the animation with the specified output file name
gif(anim, output_file, fps=fps, show_msg=false)
end
main()
@jelber2
Copy link
Author

jelber2 commented May 15, 2024

This is what the same data side-by-side looks like after error-correcting the SUP Nanopore Reads with Herro (https://github.com/lbcb-sci/herro), error-correcting with k=19 with brutal rewrite (https://github.com/natir/br), two times overlapping error-correction with peregrine-2021 (https://github.com/cschin/peregrine-2021), and error-correcting with k=21 with DeChat (https://github.com/LuoGroup2023/DeChat) (not using the hifiasm step).
WGS_HG002_EZ1_10kb_SUP
Phred Scores for SUP_Herro-pg_asm2x-dechat reads was estimated by aligning these HG002 reads to hg002v1.0.1.fasta (https://github.com/marbl/HG002), using BBTools/BBMap's calctruequality.sh followed by bbduk.sh recalibrate (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment