Created
April 25, 2014 20:33
-
-
Save jepusto/11302318 to your computer and use it in GitHub Desktop.
Bias-reduced linearization covariance estimator and degrees of freedom for multi-variate meta-analysis models
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(Formula) | |
require(metafor) | |
require(sandwich) | |
require(zoo) | |
require(lmtest) | |
#----------------------------------------------- | |
# Identify outer-most clustering variable | |
#----------------------------------------------- | |
findCluster <- function(obj) { | |
if (is.null(obj$cluster)) { | |
if (obj$withS) { | |
r <- which.min(obj$s.nlevels) | |
cluster <- obj$mf.r[[r]][[obj$s.names[r]]] | |
} else if (obj$withG) { | |
cluster <- obj$mf.r[[1]][[obj$g.names[2]]] | |
} else { | |
stop("No clustering variable specified.") | |
} | |
} else { | |
cluster <- obj$cluster | |
} | |
cluster | |
} | |
#----------------------------------------------- | |
# Bread method for rma.mv | |
#----------------------------------------------- | |
bread.rma.mv <- function(obj) { | |
cluster <- findCluster(obj) | |
length(unique(cluster)) * obj$vb | |
} | |
#----------------------------------------------- | |
# estfun method for rma.mv | |
#----------------------------------------------- | |
estfun.rma.mv <- function(obj) { | |
cluster <- droplevels(as.factor(findCluster(obj))) | |
res <- residuals(obj) | |
WX <- chol2inv(chol(obj$M)) %*% obj$X | |
rval <- by(cbind(res, WX), cluster, | |
function(x) colSums(x[,1] * x[,-1, drop = FALSE])) | |
rval <- matrix(unlist(rval), length(unique(cluster)), obj$p, byrow=TRUE) | |
colnames(rval) <- colnames(obj$X) | |
rval | |
} | |
#-------------------------------------------------- | |
# Bias-reduced linearization covariance estimator | |
# for rma.mv objects | |
#-------------------------------------------------- | |
meatBRL <- function(obj, correction = "BRL-S") { | |
cluster <- droplevels(as.factor(findCluster(obj))) | |
reslist <- tapply(residuals(obj), cluster, function(x) x, simplify = FALSE) | |
Vlist <- lapply(levels(cluster), function(c) obj$M[cluster==c, cluster==c, drop=FALSE]) | |
Wlist <- lapply(Vlist, function(v) chol2inv(chol(v))) | |
Vchol <- lapply(Vlist, chol) | |
Xlist <- lapply(levels(cluster), function(c) obj$X[cluster==c,,drop=FALSE]) | |
XQX <- lapply(Xlist, function(x) x %*% obj$vb %*% t(x)) | |
if (correction == "BRL-A") { | |
U_XQX_cholinv <- mapply(function(v,x) solve(chol(v - x)), v = Vlist, x = XQX) | |
A_list <- mapply(function(u,m) t(u) %*% t(m), u = Vchol, m = U_XQX_cholinv) | |
} else { | |
G_eig <- mapply(function(a,b,c) eigen(a %*% (b - c) %*% t(a)), | |
a = Vchol, b = Vlist, c = XQX, SIMPLIFY = FALSE) | |
G_half <- lapply(G_eig, function(g) g$vectors %*% diag(1 / sqrt(g$values), nrow=length(g$values)) %*% t(g$vectors)) | |
A_list <- mapply(function(g,v) t(v) %*% g %*% v, g = G_half, v = Vchol) | |
} | |
m <- nlevels(cluster) | |
psi <- mapply(function(x,w,a,r) t(x) %*% w %*% a %*% r, | |
x = Xlist, w = Wlist, a = A_list, r = reslist, SIMPLIFY = FALSE) | |
psi <- matrix(unlist(psi), nrow = obj$p, ncol = m, dimnames = list(colnames(obj$X))) | |
rownames(psi) | |
rval <- tcrossprod(psi) / m | |
rval | |
} | |
#-------------------------------------------------- | |
# Satterthwaite degrees of freedom | |
# for BRL covariance with rma.mv objects | |
#-------------------------------------------------- | |
dfBRL <- function(obj, correction = "BRL-S") { | |
cluster <- droplevels(as.factor(findCluster(obj))) | |
reslist <- tapply(residuals(obj), cluster, function(x) x, simplify = FALSE) | |
Vlist <- lapply(levels(cluster), function(c) obj$M[cluster==c, cluster==c, drop=FALSE]) | |
Wlist <- lapply(Vlist, function(v) chol2inv(chol(v))) | |
Vchol <- lapply(Vlist, chol) | |
Xlist <- lapply(levels(cluster), function(c) obj$X[cluster==c,,drop=FALSE]) | |
XQX <- lapply(Xlist, function(x) x %*% obj$vb %*% t(x)) | |
if (correction == "BRL-A") { | |
U_XQX_cholinv <- mapply(function(v,x) solve(chol(v - x)), v = Vlist, x = XQX) | |
A_list <- mapply(function(u,m) t(u) %*% t(m), u = Vchol, m = U_XQX_cholinv) | |
} else { | |
G_eig <- mapply(function(a,b,c) eigen(a %*% (b - c) %*% t(a)), | |
a = Vchol, b = Vlist, c = XQX, SIMPLIFY = FALSE) | |
G_half <- lapply(G_eig, function(g) g$vectors %*% diag(1 / sqrt(g$values), nrow=length(g$values)) %*% t(g$vectors)) | |
A_list <- mapply(function(g,v) t(v) %*% g %*% v, g = G_half, v = Vchol) | |
} | |
IH <- diag(1, nrow=obj$k) - obj$X %*% obj$vb %*% t(obj$X) %*% chol2inv(chol(obj$M)) | |
IH_list <- lapply(levels(cluster), function(c) IH[cluster==c,,drop=FALSE]) | |
g_list <- mapply(function(ih, a, w, x) t(ih) %*% t(a) %*% w %*% x %*% obj$vb, | |
ih = IH_list, a = A_list, w = Wlist, x = Xlist, SIMPLIFY = FALSE) | |
g_array <- array(unlist(g_list), dim = c(obj$k, obj$p, length(g_list))) | |
V_eig <- eigen(obj$M) | |
V_half <- V_eig$vectors %*% diag(sqrt(V_eig$values), nrow=length(V_eig$values)) %*% t(V_eig$vectors) | |
df_eigen <- apply(g_array, 2, function(g) eigen(V_half %*% tcrossprod(g) %*% V_half, symmetric = TRUE, only.values=TRUE)$values) | |
df <- apply(df_eigen, 2, function(x) sum(x)^2 / (sum(x^2))) | |
names(df) <- rownames(obj$b) | |
df | |
} | |
#----------------------------------------------------- | |
# robust t-tests for fixed effects in rma.mv objects | |
#----------------------------------------------------- | |
RobustResults <- function(obj, correction = "BRL-S") { | |
if (correction == "HTJ") { | |
vcov. <- sandwich(obj, adjust = TRUE) | |
cluster <- findCluster(obj) | |
df. <- length(unique(cluster)) - obj$p | |
} else { | |
vcov. <- sandwich(obj, meat. = meatBRL, correction=correction) | |
df. <- dfBRL(obj, correction = correction) | |
} | |
results <- coeftest(obj, vcov. = vcov., df = df.) | |
results <- cbind(results[,1:3, drop=FALSE], df = df., results[,4,drop=FALSE]) | |
results | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment