Last active
August 11, 2016 14:37
-
-
Save jepusto/5477dbe3efa992a3d42c2073ccb12ce4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Demonstrate the problem with gls model | |
library(nlme) | |
data(Ovary) | |
gls_raw <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary, | |
correlation = corAR1(form = ~ 1 | Mare), | |
weights = varPower()) | |
Mares <- levels(gls_raw$groups) | |
V_raw <- lapply(Mares, function(g) getVarCov(gls_raw, individual = g)) | |
Ovary_sorted <- Ovary[with(Ovary, order(Mare, Time)),] | |
gls_sorted <- update(gls_raw, data = Ovary_sorted) | |
V_sorted <- lapply(Mares, function(g) getVarCov(gls_sorted, individual = g)) | |
all.equal(gls_raw$modelStruct, gls_sorted$modelStruct) | |
all.equal(V_raw, V_sorted) | |
nlme:::getVarCov.gls | |
identical(gls_raw$groups, gls_sorted$groups) | |
identical(varWeights(gls_raw$modelStruct$varStruct), | |
varWeights(gls_sorted$modelStruct$varStruct)) | |
# proposed patch for getVarCov.gls | |
getVarCov_revised_gls <- function (obj, individual = 1, ...) { | |
S <- corMatrix(obj$modelStruct$corStruct)[[individual]] | |
if (!is.null(obj$modelStruct$varStruct)) { | |
ind <- sort(obj$groups) == individual # sort the groups before matching index | |
vw <- 1 / varWeights(obj$modelStruct$varStruct)[ind] | |
} | |
else vw <- rep(1, nrow(S)) | |
vars <- (obj$sigma * vw)^2 | |
result <- t(S * sqrt(vars)) * sqrt(vars) | |
class(result) <- c("marginal", "VarCov") | |
attr(result, "group.levels") <- names(obj$groups) | |
result | |
} | |
V_raw <- lapply(Mares, function(g) getVarCov_revised_gls(gls_raw, individual = g)) | |
V_sorted <- lapply(Mares, function(g) getVarCov_revised_gls(gls_sorted, individual = g)) | |
all.equal(V_raw, V_sorted) | |
# proposed patch for getVarCov.lme | |
getVarCov_revised_lme <- function (obj, individuals, type = c("random.effects", "conditional", "marginal"), ...) { | |
type <- match.arg(type) | |
if (any("nlme" == class(obj))) | |
stop("not implemented for \"nlme\" objects") | |
if (length(obj$group) > 1) | |
stop("not implemented for multiple levels of nesting") | |
sigma <- obj$sigma | |
D <- as.matrix(obj$modelStruct$reStruct[[1]]) * sigma^2 | |
if (type == "random.effects") { | |
result <- D | |
} | |
else { | |
result <- list() | |
groups <- sort(obj$groups[[1]]) # sort the groups before matching index | |
ugroups <- unique(groups) | |
if (missing(individuals)) | |
individuals <- as.matrix(ugroups)[1, ] | |
if (is.numeric(individuals)) | |
individuals <- ugroups[individuals] | |
for (individ in individuals) { | |
indx <- which(individ == ugroups) | |
if (!length(indx)) | |
stop(gettextf("individual %s was not used in the fit", | |
sQuote(individ)), domain = NA) | |
if (is.na(indx)) | |
stop(gettextf("individual %s was not used in the fit", | |
sQuote(individ)), domain = NA) | |
ind <- groups == individ | |
if (!is.null(obj$modelStruct$corStruct)) { | |
V <- corMatrix(obj$modelStruct$corStruct)[[as.character(individ)]] | |
} | |
else V <- diag(sum(ind)) | |
if (!is.null(obj$modelStruct$varStruct)) | |
sds <- 1/varWeights(obj$modelStruct$varStruct)[ind] | |
else sds <- rep(1, sum(ind)) | |
sds <- obj$sigma * sds | |
cond.var <- t(V * sds) * sds | |
dimnames(cond.var) <- list(1:nrow(cond.var), 1:ncol(cond.var)) | |
if (type == "conditional") | |
result[[as.character(individ)]] <- cond.var | |
else { | |
Z <- model.matrix(obj$modelStruct$reStruc, getData(obj))[ind, | |
, drop = FALSE] | |
result[[as.character(individ)]] <- cond.var + | |
Z %*% D %*% t(Z) | |
} | |
} | |
} | |
class(result) <- c(type, "VarCov") | |
attr(result, "group.levels") <- names(obj$groups) | |
result | |
} | |
lme_raw <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), | |
random = ~ 1 | Mare, | |
correlation = corExp(form = ~ Time), | |
weights = varPower(), | |
data=Ovary) | |
lme_sorted <- update(lme_raw, data = Ovary_sorted) | |
all.equal(lme_raw$modelStruct, lme_sorted$modelStruct) | |
# current getVarCov | |
V_raw <- lapply(Mares, function(g) getVarCov(lme_raw, individual = g, type = "marginal")) | |
V_sorted <- lapply(Mares, function(g) getVarCov(lme_sorted, individual = g, type = "marginal")) | |
all.equal(V_raw, V_sorted) | |
# revised getVarCov | |
V_raw <- lapply(Mares, function(g) getVarCov_revised_lme(lme_raw, individual = g, type = "marginal")) | |
V_sorted <- lapply(Mares, function(g) getVarCov_revised_lme(lme_sorted, individual = g, type = "marginal")) | |
all.equal(V_raw, V_sorted) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment