Last active
December 31, 2015 23:28
-
-
Save jepusto/8059893 to your computer and use it in GitHub Desktop.
An adaptation of the Welch t-test simulation, for running in parallel on the Stampede server of the Texas Advanced Computing Cluster.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#---------------------------------------------- | |
# data-generating model | |
#---------------------------------------------- | |
two_group_data <- function(iterations, n, p, var_ratio, delta) { | |
Group <- c(rep("C", n * p), rep("T", n * (1 - p))) | |
Y_C <- matrix(rnorm(iterations * n * p, mean = 0, sd = 1), n * p, iterations) | |
Y_T <- matrix(rnorm(iterations * n * (1 - p), mean = delta, sd = sqrt(var_ratio)), n * (1 - p), iterations) | |
dat <- data.frame(Group, rbind(Y_C, Y_T)) | |
return(dat) | |
} | |
#---------------------------------------------- | |
# estimation procedures | |
#---------------------------------------------- | |
CI_welch <- function(dat, alpha = 0.05) { | |
CI <- apply(dat[,-1], 2, function(X) t.test(X ~ dat$Group, var.equal=FALSE, conf.level = 1 - alpha)$conf.int) | |
return(t(CI)) | |
} | |
#---------------------------------------------- | |
# performance statistics | |
#---------------------------------------------- | |
coverage <- function(CI, delta) { | |
covered <- (CI[,1] < delta) & (delta < CI[,2]) | |
return(mean(covered)) | |
} | |
#---------------------------------------------- | |
# Simulation driver | |
#---------------------------------------------- | |
run_sim <- function(iterations, n, p, var_ratio, delta, seed=NULL) { | |
if (!is.null(seed)) set.seed(seed) | |
dat <- two_group_data(iterations, n, p, var_ratio, delta) | |
Welch <- coverage(CI_welch(dat), delta) | |
return(c(Welch = Welch)) | |
} | |
source_func <- ls() | |
#------------------------------------ | |
# Design parameters | |
#------------------------------------ | |
iterations <- 1000 | |
n <- 12 * (1:5) | |
p <- 1 / c(2,3,4,6) | |
R <- 2^(-2:2) | |
delta <- 0 | |
parms <- expand.grid(iterations=iterations, n=n, p=p, var_ratio=R, delta=delta) | |
parms$seed <- round(runif(nrow(parms)) * 2^30) | |
#-------------------------------------- | |
# run simulations in parallel | |
#-------------------------------------- | |
library(Rmpi) | |
library(snow) | |
library(foreach) | |
library(iterators) | |
library(doSNOW) | |
library(plyr) | |
# set up parallel processing | |
cluster <- getMPIcluster() | |
registerDoSNOW(cluster) | |
# export source functions | |
clusterExport(cluster, source_func) | |
# execute simulations | |
BFtime <- system.time(BFresults <- mdply(parms, .fun = run_sim, .parallel=TRUE)) | |
stopCluster(cluster) | |
print(BFtime) | |
save(BFresults, BFtime, file="BFresults.Rdata") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment