Skip to content

Instantly share code, notes, and snippets.

@jeremejazz
Created May 2, 2019 11:48
Show Gist options
  • Save jeremejazz/17a8a978293d8119cc3217a55ec4dfc4 to your computer and use it in GitHub Desktop.
Save jeremejazz/17a8a978293d8119cc3217a55ec4dfc4 to your computer and use it in GitHub Desktop.
Gdal2tiles-leaflet converted to Python3
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# ******************************************************************************
# $Id: gdal2tiles.py 27349 2014-05-16 18:58:51Z rouault $
#
# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/)
# Support: BRGM (http://www.brgm.fr)
# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory.
# - generate Google Earth metadata (KML SuperOverlay)
# - generate simple HTML viewer based on Google Maps and OpenLayers
# - support of global tiles (Spherical Mercator) for compatibility
# with interactive web maps a la Google Maps
# Author: Klokan Petr Pridal, klokan at klokan dot cz
# Web: http://www.klokan.cz/projects/gdal2tiles/
# GUI: http://www.maptiler.org/
#
###############################################################################
# Copyright (c) 2008, Klokan Petr Pridal
# Copyright (c) 2010-2013, Even Rouault <even dot rouault at mines-paris dot org>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# ******************************************************************************
import sys
try:
from osgeo import gdal
from osgeo import osr
except:
import gdal
print('You are using "old gen" bindings. gdal2tiles needs "new gen" bindings.')
sys.exit(1)
import os
import math
try:
from PIL import Image
import numpy
import osgeo.gdal_array as gdalarray
except:
# 'antialias' resampling is not available
pass
__version__ = '$Id: gdal2tiles.py 27349 2014-05-16 18:58:51Z rouault $'
resampling_list = (
'average',
'near',
'bilinear',
'cubic',
'cubicspline',
'lanczos',
'antialias',
)
profile_list = ('mercator', 'geodetic', 'raster') # ,'zoomify')
webviewer_list = ('all', 'google', 'openlayers', 'none')
# =============================================================================
# =============================================================================
# =============================================================================
__doc__globalmaptiles = \
"""
globalmaptiles.py
Global Map Tiles as defined in Tile Map Service (TMS) Profiles
==============================================================
Functions necessary for generation of global tiles used on the web.
It contains classes implementing coordinate conversions for:
- GlobalMercator (based on EPSG:900913 = EPSG:3785)
for Google Maps, Yahoo Maps, Bing Maps compatible tiles
- GlobalGeodetic (based on EPSG:4326)
for OpenLayers Base Map and Google Earth compatible tiles
More info at:
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation
http://msdn.microsoft.com/en-us/library/bb259689.aspx
http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates
Created by Klokan Petr Pridal on 2008-07-03.
Google Summer of Code 2008, project GDAL2Tiles for OSGEO.
In case you use this class in your product, translate it to another language
or find it usefull for your project please let me know.
My email: klokan at klokan dot cz.
I would like to know where it was used.
Class is available under the open-source GDAL license (www.gdal.org).
"""
import math
MAXZOOMLEVEL = 32
class GlobalMercator(object):
"""
TMS Global Mercator Profile
---------------------------
Functions necessary for generation of tiles in Spherical Mercator projection,
EPSG:900913 (EPSG:gOOglE, Google Maps Global Mercator), EPSG:3785, OSGEO:41001.
Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps,
UK Ordnance Survey OpenSpace API, ...
and you can overlay them on top of base maps of those web mapping applications.
Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left).
What coordinate conversions do we need for TMS Global Mercator tiles::
LatLon <-> Meters <-> Pixels <-> Tile
WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid
lat/lon XY in metres XY pixels Z zoom XYZ from TMS
EPSG:4326 EPSG:900913
.----. --------- -- TMS
/ \ <-> | | <-> /----/ <-> Google
\ / | | /--------/ QuadTree
----- --------- /------------/
KML, public WebMapService Web Clients TileMapService
What is the coordinate extent of Earth in EPSG:900913?
[-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244]
Constant 20037508.342789244 comes from the circumference of the Earth in meters,
which is 40 thousand kilometers, the coordinate origin is in the middle of extent.
In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0
$ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:900913
Polar areas with abs(latitude) bigger then 85.05112878 are clipped off.
What are zoom level constants (pixels/meter) for pyramid with EPSG:900913?
whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile,
every lower zoom level resolution is always divided by two
initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062
What is the difference between TMS and Google Maps/QuadTree tile name convention?
The tile raster itself is the same (equal extent, projection, pixel size),
there is just different identification of the same raster tile.
Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ.
Google placed the origin [0,0] to the top-left corner, reference is XYZ.
Microsoft is referencing tiles by a QuadTree name, defined on the website:
http://msdn2.microsoft.com/en-us/library/bb259689.aspx
The lat/lon coordinates are using WGS84 datum, yeh?
Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum.
Well, the web clients like Google Maps are projecting those coordinates by
Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if
the were on the WGS84 ellipsoid.
From MSDN documentation:
To simplify the calculations, we use the spherical form of projection, not
the ellipsoidal form. Since the projection is used only for map display,
and not for displaying numeric coordinates, we don't need the extra precision
of an ellipsoidal projection. The spherical projection causes approximately
0.33 percent scale distortion in the Y direction, which is not visually noticable.
How do I create a raster in EPSG:900913 and convert coordinates with PROJ.4?
You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform.
All of the tools supports -t_srs 'epsg:900913'.
For other GIS programs check the exact definition of the projection:
More info at http://spatialreference.org/ref/user/google-projection/
The same projection is degined as EPSG:3785. WKT definition is in the official
EPSG database.
Proj4 Text:
+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0
+k=1.0 +units=m +nadgrids=@null +no_defs
Human readable WKT format of EPGS:900913:
PROJCS["Google Maps Global Mercator",
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]],
PROJECTION["Mercator_1SP"],
PARAMETER["central_meridian",0],
PARAMETER["scale_factor",1],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["metre",1,
AUTHORITY["EPSG","9001"]]]
"""
def __init__(self, tileSize=256):
'''Initialize the TMS Global Mercator pyramid'''
self.tileSize = tileSize
self.initialResolution = 2 * math.pi * 6378137 / self.tileSize
# 156543.03392804062 for tileSize 256 pixels
self.originShift = 2 * math.pi * 6378137 / 2.0
# 20037508.342789244
def LatLonToMeters(self, lat, lon):
'''Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913'''
mx = lon * self.originShift / 180.0
my = math.log(math.tan((90 + lat) * math.pi / 360.0)) \
/ (math.pi / 180.0)
my = my * self.originShift / 180.0
return (mx, my)
def MetersToLatLon(self, mx, my):
'''Converts XY point from Spherical Mercator EPSG:900913 to lat/lon in WGS84 Datum'''
lon = mx / self.originShift * 180.0
lat = my / self.originShift * 180.0
lat = 180 / math.pi * (2 * math.atan(math.exp(lat * math.pi
/ 180.0)) - math.pi / 2.0)
return (lat, lon)
def PixelsToMeters(
self,
px,
py,
zoom,
):
'''Converts pixel coordinates in given zoom level of pyramid to EPSG:900913'''
res = self.Resolution(zoom)
mx = px * res - self.originShift
my = py * res - self.originShift
return (mx, my)
def MetersToPixels(
self,
mx,
my,
zoom,
):
'''Converts EPSG:900913 to pyramid pixel coordinates in given zoom level'''
res = self.Resolution(zoom)
px = (mx + self.originShift) / res
py = (my + self.originShift) / res
return (px, py)
def PixelsToTile(self, px, py):
'''Returns a tile covering region in given pixel coordinates'''
tx = int(math.ceil(px / float(self.tileSize)) - 1)
ty = int(math.ceil(py / float(self.tileSize)) - 1)
return (tx, ty)
def PixelsToRaster(
self,
px,
py,
zoom,
):
'''Move the origin of pixel coordinates to top-left corner'''
mapSize = self.tileSize << zoom
return (px, mapSize - py)
def MetersToTile(
self,
mx,
my,
zoom,
):
'''Returns tile for given mercator coordinates'''
(px, py) = self.MetersToPixels(mx, my, zoom)
return self.PixelsToTile(px, py)
def TileBounds(
self,
tx,
ty,
zoom,
):
'''Returns bounds of the given tile in EPSG:900913 coordinates'''
(minx, miny) = self.PixelsToMeters(tx * self.tileSize, ty
* self.tileSize, zoom)
(maxx, maxy) = self.PixelsToMeters((tx + 1) * self.tileSize,
(ty + 1) * self.tileSize, zoom)
return (minx, miny, maxx, maxy)
def TileLatLonBounds(
self,
tx,
ty,
zoom,
):
'''Returns bounds of the given tile in latutude/longitude using WGS84 datum'''
bounds = self.TileBounds(tx, ty, zoom)
(minLat, minLon) = self.MetersToLatLon(bounds[0], bounds[1])
(maxLat, maxLon) = self.MetersToLatLon(bounds[2], bounds[3])
return (minLat, minLon, maxLat, maxLon)
def Resolution(self, zoom):
'''Resolution (meters/pixel) for given zoom level (measured at Equator)'''
# return (2 * math.pi * 6378137) / (self.tileSize * 2**zoom)
return self.initialResolution / 2 ** zoom
def ZoomForPixelSize(self, pixelSize):
'''Maximal scaledown zoom of the pyramid closest to the pixelSize.'''
for i in range(MAXZOOMLEVEL):
if pixelSize > self.Resolution(i):
if i != 0:
return i - 1
else:
return 0 # We don't want to scale up
def GoogleTile(
self,
tx,
ty,
zoom,
):
'''Converts TMS tile coordinates to Google Tile coordinates'''
# coordinate origin is moved from bottom-left to top-left corner of the extent
return (tx, 2 ** zoom - 1 - ty)
def QuadTree(
self,
tx,
ty,
zoom,
):
'''Converts TMS tile coordinates to Microsoft QuadTree'''
quadKey = ''
ty = 2 ** zoom - 1 - ty
for i in range(zoom, 0, -1):
digit = 0
mask = 1 << i - 1
if tx & mask != 0:
digit += 1
if ty & mask != 0:
digit += 2
quadKey += str(digit)
return quadKey
# ---------------------
class GlobalGeodetic(object):
"""
TMS Global Geodetic Profile
---------------------------
Functions necessary for generation of global tiles in Plate Carre projection,
EPSG:4326, "unprojected profile".
Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters)
and you can overlay the tiles on top of OpenLayers base map.
Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left).
What coordinate conversions do we need for TMS Global Geodetic tiles?
Global Geodetic tiles are using geodetic coordinates (latitude,longitude)
directly as planar coordinates XY (it is also called Unprojected or Plate
Carre). We need only scaling to pixel pyramid and cutting to tiles.
Pyramid has on top level two tiles, so it is not square but rectangle.
Area [-180,-90,180,90] is scaled to 512x256 pixels.
TMS has coordinate origin (for pixels and tiles) in bottom-left corner.
Rasters are in EPSG:4326 and therefore are compatible with Google Earth.
LatLon <-> Pixels <-> Tiles
WGS84 coordinates Pixels in pyramid Tiles in pyramid
lat/lon XY pixels Z zoom XYZ from TMS
EPSG:4326
.----. ----
/ \ <-> /--------/ <-> TMS
\ / /--------------/
----- /--------------------/
WMS, KML Web Clients, Google Earth TileMapService
"""
def __init__(self, tmscompatible, tileSize=256):
self.tileSize = tileSize
if tmscompatible is not None:
# Defaults the resolution factor to 0.703125 (2 tiles @ level 0)
# Adhers to OSGeo TMS spec http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic
self.resFact = 180.0 / self.tileSize
else:
# Defaults the resolution factor to 1.40625 (1 tile @ level 0)
# Adheres OpenLayers, MapProxy, etc default resolution for WMTS
self.resFact = 360.0 / self.tileSize
def LonLatToPixels(
self,
lon,
lat,
zoom,
):
'''Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid'''
res = self.resFact / 2 ** zoom
px = (180 + lon) / res
py = (90 + lat) / res
return (px, py)
def PixelsToTile(self, px, py):
'''Returns coordinates of the tile covering region in pixel coordinates'''
tx = int(math.ceil(px / float(self.tileSize)) - 1)
ty = int(math.ceil(py / float(self.tileSize)) - 1)
return (tx, ty)
def LonLatToTile(
self,
lon,
lat,
zoom,
):
'''Returns the tile for zoom which covers given lon/lat coordinates'''
(px, py) = self.LonLatToPixels(lon, lat, zoom)
return self.PixelsToTile(px, py)
def Resolution(self, zoom):
'''Resolution (arc/pixel) for given zoom level (measured at Equator)'''
return self.resFact / 2 ** zoom
# return 180 / float( 1 << (8+zoom) )
def ZoomForPixelSize(self, pixelSize):
'''Maximal scaledown zoom of the pyramid closest to the pixelSize.'''
for i in range(MAXZOOMLEVEL):
if pixelSize > self.Resolution(i):
if i != 0:
return i - 1
else:
return 0 # We don't want to scale up
def TileBounds(
self,
tx,
ty,
zoom,
):
'''Returns bounds of the given tile'''
res = self.resFact / 2 ** zoom
return (tx * self.tileSize * res - 180, ty * self.tileSize
* res - 90, (tx + 1) * self.tileSize * res - 180, (ty
+ 1) * self.tileSize * res - 90)
def TileLatLonBounds(
self,
tx,
ty,
zoom,
):
'''Returns bounds of the given tile in the SWNE form'''
b = self.TileBounds(tx, ty, zoom)
return (b[1], b[0], b[3], b[2])
# ---------------------
# TODO: Finish Zoomify implemtentation!!!
class Zoomify(object):
"""
Tiles compatible with the Zoomify viewer
----------------------------------------
"""
def __init__(
self,
width,
height,
tilesize=256,
tileformat='jpg',
):
"""Initialization of the Zoomify tile tree"""
self.tilesize = tilesize
self.tileformat = tileformat
imagesize = (width, height)
tiles = (math.ceil(width / tilesize), math.ceil(height
/ tilesize))
# Size (in tiles) for each tier of pyramid.
self.tierSizeInTiles = []
self.tierSizeInTiles.push(tiles)
# Image size in pixels for each pyramid tierself
self.tierImageSize = []
self.tierImageSize.append(imagesize)
while imagesize[0] > tilesize or imageSize[1] > tilesize:
imagesize = (math.floor(imagesize[0] / 2),
math.floor(imagesize[1] / 2))
tiles = (math.ceil(imagesize[0] / tilesize),
math.ceil(imagesize[1] / tilesize))
self.tierSizeInTiles.append(tiles)
self.tierImageSize.append(imagesize)
self.tierSizeInTiles.reverse()
self.tierImageSize.reverse()
# Depth of the Zoomify pyramid, number of tiers (zoom levels)
self.numberOfTiers = len(self.tierSizeInTiles)
# Number of tiles up to the given tier of pyramid.
self.tileCountUpToTier = []
self.tileCountUpToTier[0] = 0
for i in range(1, self.numberOfTiers + 1):
self.tileCountUpToTier.append(self.tierSizeInTiles[i
- 1][0] * self.tierSizeInTiles[i - 1][1]
+ self.tileCountUpToTier[i - 1])
def tilefilename(
self,
x,
y,
z,
):
"""Returns filename for tile with given coordinates"""
tileIndex = x + y * self.tierSizeInTiles[z][0] \
+ self.tileCountUpToTier[z]
return os.path.join('TileGroup%.0f' % math.floor(tileIndex
/ 256), '%s-%s-%s.%s' % (z, x, y,
self.tileformat))
# =============================================================================
# =============================================================================
# =============================================================================
class GDAL2Tiles(object):
# -------------------------------------------------------------------------
def process(self):
"""The main processing function, runs all the main steps of processing"""
# Opening and preprocessing of the input file
self.open_input()
# Generation of main metadata files and HTML viewers
self.generate_metadata()
# Generation of the lowest tiles
self.generate_base_tiles()
# Generation of the overview tiles (higher in the pyramid)
self.generate_overview_tiles()
# -------------------------------------------------------------------------
def error(self, msg, details=''):
"""Print an error message and stop the processing"""
if details:
self.parser.error(msg + '''
''' + details)
else:
self.parser.error(msg)
# -------------------------------------------------------------------------
def progressbar(self, complete=0.0):
"""Print progressbar for float value 0..1"""
gdal.TermProgress_nocb(complete)
# -------------------------------------------------------------------------
def stop(self):
"""Stop the rendering immediately"""
self.stopped = True
# -------------------------------------------------------------------------
def __init__(self, arguments):
"""Constructor function - initialization"""
self.stopped = False
self.input = None
self.output = None
# Tile format
self.tilesize = 256
self.tiledriver = 'PNG'
self.tileext = 'png'
# Should we read bigger window of the input raster and scale it down?
# Note: Modified leter by open_input()
# Not for 'near' resampling
# Not for Wavelet based drivers (JPEG2000, ECW, MrSID)
# Not for 'raster' profile
self.scaledquery = True
# How big should be query window be for scaling down
# Later on reset according the chosen resampling algorightm
self.querysize = 4 * self.tilesize
# Should we use Read on the input file for generating overview tiles?
# Note: Modified later by open_input()
# Otherwise the overview tiles are generated from existing underlying tiles
self.overviewquery = False
# RUN THE ARGUMENT PARSER:
self.optparse_init()
(self.options, self.args) = \
self.parser.parse_args(args=arguments)
if not self.args:
self.error('No input file specified')
# POSTPROCESSING OF PARSED ARGUMENTS:
# Workaround for old versions of GDAL
try:
if self.options.verbose and self.options.resampling \
== 'near' or gdal.TermProgress_nocb:
pass
except:
self.error('This version of GDAL is not supported. Please upgrade to 1.6+.'
)
# ,"You can try run crippled version of gdal2tiles with parameters: -v -r 'near'")
# Is output directory the last argument?
# Test output directory, if it doesn't exist
if os.path.isdir(self.args[-1]) or len(self.args) > 1 \
and not os.path.exists(self.args[-1]):
self.output = self.args[-1]
self.args = self.args[:-1]
# More files on the input not directly supported yet
if len(self.args) > 1:
self.error('Processing of several input files is not supported.'
,
"""Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the files:
gdal_vrtmerge.py -o merged.vrt %s"""
% ' '.join(self.args))
# TODO: Call functions from gdal_vrtmerge.py directly
self.input = self.args[0]
# Default values for not given options
if not self.output:
# Directory with input filename without extension in actual directory
self.output = \
os.path.splitext(os.path.basename(self.input))[0]
if not self.options.title:
self.options.title = os.path.basename(self.input)
if self.options.url and not self.options.url.endswith('/'):
self.options.url += '/'
if self.options.url:
self.options.url += os.path.basename(self.output) + '/'
# Supported options
self.resampling = None
if self.options.resampling == 'average':
try:
if gdal.RegenerateOverview:
pass
except:
self.error("'average' resampling algorithm is not available."
,
"Please use -r 'near' argument or upgrade to newer version of GDAL."
)
elif self.options.resampling == 'antialias':
try:
if numpy:
pass
except:
self.error("'antialias' resampling algorithm is not available."
,
'Install PIL (Python Imaging Library) and numpy.'
)
elif self.options.resampling == 'near':
self.resampling = gdal.GRA_NearestNeighbour
self.querysize = self.tilesize
elif self.options.resampling == 'bilinear':
self.resampling = gdal.GRA_Bilinear
self.querysize = self.tilesize * 2
elif self.options.resampling == 'cubic':
self.resampling = gdal.GRA_Cubic
elif self.options.resampling == 'cubicspline':
self.resampling = gdal.GRA_CubicSpline
elif self.options.resampling == 'lanczos':
self.resampling = gdal.GRA_Lanczos
# User specified zoom levels
self.tminz = None
self.tmaxz = None
if self.options.zoom:
minmax = self.options.zoom.split('-', 1)
minmax.extend([''])
(min, max) = minmax[:2]
self.tminz = int(min)
if max:
self.tmaxz = int(max)
else:
self.tmaxz = int(min)
# KML generation
self.kml = self.options.kml
# Output the results
if self.options.verbose:
print(('Options:', self.options))
print(('Input:', self.input))
print(('Output:', self.output))
print('Cache: %s MB' % (gdal.GetCacheMax() / 1024 / 1024))
print('')
# -------------------------------------------------------------------------
def optparse_init(self):
"""Prepare the option parser for input (argv)"""
from optparse import OptionParser, OptionGroup
usage = 'Usage: %prog [options] input_file(s) [output]'
p = OptionParser(usage, version='%prog ' + __version__)
p.add_option(
'-p',
'--profile',
dest='profile',
type='choice',
choices=profile_list,
help="Tile cutting profile (%s) - default 'mercator' (Google Maps compatible)"
% ','.join(profile_list),
)
p.add_option(
'-r',
'--resampling',
dest='resampling',
type='choice',
choices=resampling_list,
help="Resampling method (%s) - default 'average'"
% ','.join(resampling_list),
)
p.add_option('-s', '--s_srs', dest='s_srs', metavar='SRS',
help='The spatial reference system used for the source input data'
)
p.add_option('-z', '--zoom', dest='zoom',
help="Zoom levels to render (format:'2-5' or '10')."
)
p.add_option('-e', '--resume', dest='resume',
action='store_true',
help='Resume mode. Generate only missing files.')
p.add_option('-a', '--srcnodata', dest='srcnodata',
metavar='NODATA',
help='NODATA transparency value to assign to the input data'
)
p.add_option('-d', '--tmscompatible', dest='tmscompatible',
action='store_true',
help='When using the geodetic profile, specifies the base resolution as 0.703125 or 2 tiles at zoom level 0.'
)
p.add_option('-l', '--leaflet', action='store_true',
dest='leaflet',
help="Set 0,0 point to north. For use with 'leaflet'. Requires -p raster. "
)
p.add_option('-v', '--verbose', action='store_true',
dest='verbose',
help='Print status messages to stdout')
# KML options
g = OptionGroup(p, 'KML (Google Earth) options',
'Options for generated Google Earth SuperOverlay metadata'
)
g.add_option('-k', '--force-kml', dest='kml',
action='store_true',
help="Generate KML for Google Earth - default for 'geodetic' profile and 'raster' in EPSG:4326. For a dataset with different projection use with caution!"
)
g.add_option('-n', '--no-kml', dest='kml', action='store_false'
,
help='Avoid automatic generation of KML files for EPSG:4326'
)
g.add_option('-u', '--url', dest='url',
help='URL address where the generated tiles are going to be published'
)
p.add_option_group(g)
# HTML options
g = OptionGroup(p, 'Web viewer options',
'Options for generated HTML viewers a la Google Maps'
)
g.add_option(
'-w',
'--webviewer',
dest='webviewer',
type='choice',
choices=webviewer_list,
help="Web viewer to generate (%s) - default 'all'"
% ','.join(webviewer_list),
)
g.add_option('-t', '--title', dest='title',
help='Title of the map')
g.add_option('-c', '--copyright', dest='copyright',
help='Copyright for the map')
g.add_option('-g', '--googlekey', dest='googlekey',
help='Google Maps API key from http://code.google.com/apis/maps/signup.html'
)
(g.add_option('-b', '--bingkey', dest='bingkey',
help='Bing Maps API key from https://www.bingmapsportal.com/'
), )
p.add_option_group(g)
# TODO: MapFile + TileIndexes per zoom level for efficient MapServer WMS
# g = OptionGroup(p, "WMS MapServer metadata", "Options for generated mapfile and tileindexes for MapServer")
# g.add_option("-i", "--tileindex", dest='wms', action="store_true"
# help="Generate tileindex and mapfile for MapServer (WMS)")
# p.add_option_group(g)
p.set_defaults(
verbose=False,
profile='mercator',
kml=False,
url='',
webviewer='all',
copyright='',
resampling='average',
resume=False,
googlekey='INSERT_YOUR_KEY_HERE',
bingkey='INSERT_YOUR_KEY_HERE',
)
self.parser = p
# -------------------------------------------------------------------------
def open_input(self):
"""Initialization of the input raster, reprojection if necessary"""
gdal.AllRegister()
# Initialize necessary GDAL drivers
self.out_drv = gdal.GetDriverByName(self.tiledriver)
self.mem_drv = gdal.GetDriverByName('MEM')
if not self.out_drv:
raise Exception("The '%s' driver was not found, is it available in this GDAL build?"
, self.tiledriver)
if not self.mem_drv:
raise Exception("The 'MEM' driver was not found, is it available in this GDAL build?"
)
# Open the input file
if self.input:
self.in_ds = gdal.Open(self.input, gdal.GA_ReadOnly)
else:
raise Exception('No input file was specified')
if self.options.verbose:
print(('Input file:', '( %sP x %sL - %s bands)'
% (self.in_ds.RasterXSize, self.in_ds.RasterYSize,
self.in_ds.RasterCount)))
if not self.in_ds:
# Note: GDAL prints the ERROR message too
self.error("It is not possible to open the input file '%s'."
% self.input)
# Read metadata from the input file
if self.in_ds.RasterCount == 0:
self.error("Input file '%s' has no raster band"
% self.input)
if self.in_ds.GetRasterBand(1).GetRasterColorTable():
# TODO: Process directly paletted dataset by generating VRT in memory
self.error('Please convert this file to RGB/RGBA and run gdal2tiles on the result.'
,
"""From paletted file you can create RGBA file (temp.vrt) by:
gdal_translate -of vrt -expand rgba %s temp.vrt
then run:
gdal2tiles temp.vrt"""
% self.input)
# Get NODATA value
self.in_nodata = []
for i in range(1, self.in_ds.RasterCount + 1):
if self.in_ds.GetRasterBand(i).GetNoDataValue() != None:
self.in_nodata.append(self.in_ds.GetRasterBand(i).GetNoDataValue())
if self.options.srcnodata:
nds = list(map(float, self.options.srcnodata.split(',')))
if len(nds) < self.in_ds.RasterCount:
self.in_nodata = (nds
* self.in_ds.RasterCount)[:self.in_ds.RasterCount]
else:
self.in_nodata = nds
if self.options.verbose:
print('NODATA: %s' % self.in_nodata)
#
# Here we should have RGBA input dataset opened in self.in_ds
#
if self.options.verbose:
print(('Preprocessed file:', '( %sP x %sL - %s bands)'
% (self.in_ds.RasterXSize, self.in_ds.RasterYSize,
self.in_ds.RasterCount)))
# Spatial Reference System of the input raster
self.in_srs = None
if self.options.s_srs:
self.in_srs = osr.SpatialReference()
self.in_srs.SetFromUserInput(self.options.s_srs)
self.in_srs_wkt = self.in_srs.ExportToWkt()
else:
self.in_srs_wkt = self.in_ds.GetProjection()
if not self.in_srs_wkt and self.in_ds.GetGCPCount() != 0:
self.in_srs_wkt = self.in_ds.GetGCPProjection()
if self.in_srs_wkt:
self.in_srs = osr.SpatialReference()
self.in_srs.ImportFromWkt(self.in_srs_wkt)
# elif self.options.profile != 'raster':
# self.error("There is no spatial reference system info included in the input file.","You should run gdal2tiles with --s_srs EPSG:XXXX or similar.")
# Spatial Reference System of tiles
self.out_srs = osr.SpatialReference()
if self.options.profile == 'mercator':
self.out_srs.ImportFromEPSG(900913)
elif self.options.profile == 'geodetic':
self.out_srs.ImportFromEPSG(4326)
else:
self.out_srs = self.in_srs
# Are the reference systems the same? Reproject if necessary.
self.out_ds = None
if self.options.profile in ('mercator', 'geodetic'):
if self.in_ds.GetGeoTransform() == (
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
) and self.in_ds.GetGCPCount() == 0:
self.error("There is no georeference - neither affine transformation (worldfile) nor GCPs. You can generate only 'raster' profile tiles."
,
"Either gdal2tiles with parameter -p 'raster' or use another GIS software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs"
)
if self.in_srs:
if self.in_srs.ExportToProj4() \
!= self.out_srs.ExportToProj4() \
or self.in_ds.GetGCPCount() != 0:
# Generation of VRT dataset in tile projection, default 'nearest neighbour' warping
self.out_ds = gdal.AutoCreateWarpedVRT(self.in_ds,
self.in_srs_wkt, self.out_srs.ExportToWkt())
# TODO: HIGH PRIORITY: Correction of AutoCreateWarpedVRT according the max zoomlevel for correct direct warping!!!
if self.options.verbose:
print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')")
self.out_ds.GetDriver().CreateCopy('tiles.vrt',
self.out_ds)
# Note: self.in_srs and self.in_srs_wkt contain still the non-warped reference system!!!
# Correction of AutoCreateWarpedVRT for NODATA values
if self.in_nodata != []:
import tempfile
tempfilename = tempfile.mktemp('-gdal2tiles.vrt'
)
self.out_ds.GetDriver().CreateCopy(tempfilename,
self.out_ds)
# open as a text file
s = open(tempfilename).read()
# Add the warping options
s = s.replace("""<GDALWarpOptions>""",
"""<GDALWarpOptions>
<Option name="INIT_DEST">NO_DATA</Option>
<Option name="UNIFIED_SRC_NODATA">YES</Option>""")
# replace BandMapping tag for NODATA bands....
for i in range(len(self.in_nodata)):
s = \
s.replace("""<BandMapping src="%i" dst="%i"/>"""
% (i + 1, i + 1),
"""<BandMapping src="%i" dst="%i">
<SrcNoDataReal>%i</SrcNoDataReal>
<SrcNoDataImag>0</SrcNoDataImag>
<DstNoDataReal>%i</DstNoDataReal>
<DstNoDataImag>0</DstNoDataImag>
</BandMapping>"""
% (i + 1, i + 1, self.in_nodata[i],
self.in_nodata[i])) # Or rewrite to white by: , 255 ))
# save the corrected VRT
open(tempfilename, 'w').write(s)
# open by GDAL as self.out_ds
self.out_ds = gdal.Open(tempfilename) # , gdal.GA_ReadOnly)
# delete the temporary file
os.unlink(tempfilename)
# set NODATA_VALUE metadata
self.out_ds.SetMetadataItem('NODATA_VALUES',
'%i %i %i' % (self.in_nodata[0],
self.in_nodata[1], self.in_nodata[2]))
if self.options.verbose:
print("Modified warping result saved into 'tiles1.vrt'")
open('tiles1.vrt', 'w').write(s)
# -----------------------------------
# Correction of AutoCreateWarpedVRT for Mono (1 band) and RGB (3 bands) files without NODATA:
# equivalent of gdalwarp -dstalpha
if self.in_nodata == [] and self.out_ds.RasterCount \
in [1, 3]:
import tempfile
tempfilename = tempfile.mktemp('-gdal2tiles.vrt'
)
self.out_ds.GetDriver().CreateCopy(tempfilename,
self.out_ds)
# open as a text file
s = open(tempfilename).read()
# Add the warping options
s = s.replace("""<BlockXSize>""",
"""<VRTRasterBand dataType="Byte" band="%i" subClass="VRTWarpedRasterBand">
<ColorInterp>Alpha</ColorInterp>
</VRTRasterBand>
<BlockXSize>"""
% (self.out_ds.RasterCount + 1))
s = s.replace("""</GDALWarpOptions>""",
"""<DstAlphaBand>%i</DstAlphaBand>
</GDALWarpOptions>"""
% (self.out_ds.RasterCount + 1))
s = s.replace("""</WorkingDataType>""",
"""</WorkingDataType>
<Option name="INIT_DEST">0</Option>"""
)
# save the corrected VRT
open(tempfilename, 'w').write(s)
# open by GDAL as self.out_ds
self.out_ds = gdal.Open(tempfilename) # , gdal.GA_ReadOnly)
# delete the temporary file
os.unlink(tempfilename)
if self.options.verbose:
print("Modified -dstalpha warping result saved into 'tiles1.vrt'")
open('tiles1.vrt', 'w').write(s)
s = '''
'''
else:
self.error('Input file has unknown SRS.',
'Use --s_srs ESPG:xyz (or similar) to provide source reference system.'
)
if self.out_ds and self.options.verbose:
print(('Projected file:', 'tiles.vrt',
'( %sP x %sL - %s bands)'
% (self.out_ds.RasterXSize,
self.out_ds.RasterYSize,
self.out_ds.RasterCount)))
if not self.out_ds:
self.out_ds = self.in_ds
#
# Here we should have a raster (out_ds) in the correct Spatial Reference system
#
# Get alpha band (either directly or from NODATA value)
self.alphaband = self.out_ds.GetRasterBand(1).GetMaskBand()
if self.alphaband.GetMaskFlags() & gdal.GMF_ALPHA \
or self.out_ds.RasterCount == 4 or self.out_ds.RasterCount \
== 2:
# TODO: Better test for alpha band in the dataset
self.dataBandsCount = self.out_ds.RasterCount - 1
else:
self.dataBandsCount = self.out_ds.RasterCount
# KML test
self.isepsg4326 = False
srs4326 = osr.SpatialReference()
srs4326.ImportFromEPSG(4326)
if self.out_srs and srs4326.ExportToProj4() \
== self.out_srs.ExportToProj4():
self.kml = True
self.isepsg4326 = True
if self.options.verbose:
print('KML autotest OK!')
# Read the georeference
self.out_gt = self.out_ds.GetGeoTransform()
# originX, originY = self.out_gt[0], self.out_gt[3]
# pixelSize = self.out_gt[1] # = self.out_gt[5]
# Test the size of the pixel
# MAPTILER - COMMENTED
# if self.out_gt[1] != (-1 * self.out_gt[5]) and self.options.profile != 'raster':
# TODO: Process corectly coordinates with are have swichted Y axis (display in OpenLayers too)
# self.error("Size of the pixel in the output differ for X and Y axes.")
# Report error in case rotation/skew is in geotransform (possible only in 'raster' profile)
if (self.out_gt[2], self.out_gt[4]) != (0, 0):
self.error('Georeference of the raster contains rotation or skew. Such raster is not supported. Please use gdalwarp first.'
)
# TODO: Do the warping in this case automaticaly
#
# Here we expect: pixel is square, no rotation on the raster
#
# Output Bounds - coordinates in the output SRS
self.ominx = self.out_gt[0]
self.omaxx = self.out_gt[0] + self.out_ds.RasterXSize \
* self.out_gt[1]
self.omaxy = self.out_gt[3]
self.ominy = self.out_gt[3] - self.out_ds.RasterYSize \
* self.out_gt[1]
# Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15
if self.options.verbose:
print(('Bounds (output srs):', round(self.ominx, 13),
self.ominy, self.omaxx, self.omaxy))
#
# Calculating ranges for tiles in different zoom levels
#
if self.options.profile == 'mercator':
self.mercator = GlobalMercator() # from globalmaptiles.py
# Function which generates SWNE in LatLong for given tile
self.tileswne = self.mercator.TileLatLonBounds
# Generate table with min max tile coordinates for all zoomlevels
self.tminmax = list(range(0, 32))
for tz in range(0, 32):
(tminx, tminy) = self.mercator.MetersToTile(self.ominx,
self.ominy, tz)
(tmaxx, tmaxy) = self.mercator.MetersToTile(self.omaxx,
self.omaxy, tz)
# crop tiles extending world limits (+-180,+-90)
(tminx, tminy) = (max(0, tminx), max(0, tminy))
(tmaxx, tmaxy) = (min(2 ** tz - 1, tmaxx), min(2 ** tz
- 1, tmaxy))
self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)
# TODO: Maps crossing 180E (Alaska?)
# Get the minimal zoom level (map covers area equivalent to one tile)
if self.tminz == None:
self.tminz = \
self.mercator.ZoomForPixelSize(self.out_gt[1]
* max(self.out_ds.RasterXSize,
self.out_ds.RasterYSize) / float(self.tilesize))
# Get the maximal zoom level (closest possible zoom level up on the resolution of raster)
if self.tmaxz == None:
self.tmaxz = \
self.mercator.ZoomForPixelSize(self.out_gt[1])
if self.options.verbose:
print(('Bounds (latlong):',
self.mercator.MetersToLatLon(self.ominx,
self.ominy),
self.mercator.MetersToLatLon(self.omaxx,
self.omaxy)))
print(('MinZoomLevel:', self.tminz))
print(('MaxZoomLevel:', self.tmaxz, '(',
self.mercator.Resolution(self.tmaxz), ')'))
if self.options.profile == 'geodetic':
self.geodetic = GlobalGeodetic(self.options.tmscompatible) # from globalmaptiles.py
# Function which generates SWNE in LatLong for given tile
self.tileswne = self.geodetic.TileLatLonBounds
# Generate table with min max tile coordinates for all zoomlevels
self.tminmax = list(range(0, 32))
for tz in range(0, 32):
(tminx, tminy) = self.geodetic.LonLatToTile(self.ominx,
self.ominy, tz)
(tmaxx, tmaxy) = self.geodetic.LonLatToTile(self.omaxx,
self.omaxy, tz)
# crop tiles extending world limits (+-180,+-90)
(tminx, tminy) = (max(0, tminx), max(0, tminy))
(tmaxx, tmaxy) = (min(2 ** (tz + 1) - 1, tmaxx), min(2
** tz - 1, tmaxy))
self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)
# TODO: Maps crossing 180E (Alaska?)
# Get the maximal zoom level (closest possible zoom level up on the resolution of raster)
if self.tminz == None:
self.tminz = \
self.geodetic.ZoomForPixelSize(self.out_gt[1]
* max(self.out_ds.RasterXSize,
self.out_ds.RasterYSize) / float(self.tilesize))
# Get the maximal zoom level (closest possible zoom level up on the resolution of raster)
if self.tmaxz == None:
self.tmaxz = \
self.geodetic.ZoomForPixelSize(self.out_gt[1])
if self.options.verbose:
print(('Bounds (latlong):', self.ominx, self.ominy,
self.omaxx, self.omaxy))
if self.options.profile == 'raster':
log2 = lambda x: math.log10(x) / math.log10(2) # log2 (base 2 logarithm)
self.nativezoom = \
int(max(math.ceil(log2(self.out_ds.RasterXSize
/ float(self.tilesize))),
math.ceil(log2(self.out_ds.RasterYSize
/ float(self.tilesize)))))
if self.tmaxz < self.nativezoom:
self.tmaxz = self.nativezoom
if self.options.verbose:
print(('Native zoom of the raster:', self.nativezoom))
# Get the minimal zoom level (whole raster in one tile)
if self.tminz == None:
self.tminz = 0
# Get the maximal zoom level (native resolution of the raster)
if self.tmaxz == None:
self.tmaxz = self.nativezoom
# Generate table with min max tile coordinates for all zoomlevels
self.tminmax = list(range(0, self.tmaxz + 1))
self.tsize = list(range(0, self.tmaxz + 1))
for tz in range(0, self.tmaxz + 1):
tsize = 2.0 ** (self.nativezoom - tz) * self.tilesize
(tminx, tminy) = (0, 0)
tmaxx = int(math.ceil(self.out_ds.RasterXSize / tsize)) \
- 1
tmaxy = int(math.ceil(self.out_ds.RasterYSize / tsize)) \
- 1
self.tsize[tz] = math.ceil(tsize)
self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)
# Function which generates SWNE in LatLong for given tile
if self.kml and self.in_srs_wkt:
self.ct = osr.CoordinateTransformation(self.in_srs,
srs4326)
def rastertileswne(x, y, z):
pixelsizex = 2 ** (self.tmaxz - z) * self.out_gt[1] # X-pixel size in level
pixelsizey = 2 ** (self.tmaxz - z) * self.out_gt[1] # Y-pixel size in level (usually -1*pixelsizex)
west = self.out_gt[0] + x * self.tilesize \
* pixelsizex
east = west + self.tilesize * pixelsizex
south = self.ominy + y * self.tilesize * pixelsizex
north = south + self.tilesize * pixelsizex
if not self.isepsg4326:
# Transformation to EPSG:4326 (WGS84 datum)
(west, south) = self.ct.TransformPoint(west,
south)[:2]
(east, north) = self.ct.TransformPoint(east,
north)[:2]
return (south, west, north, east)
self.tileswne = rastertileswne
else:
self.tileswne = lambda x, y, z: (0, 0, 0, 0)
# -------------------------------------------------------------------------
def generate_metadata(self):
"""Generation of main metadata files and HTML viewers (metadata related to particular tiles are generated during the tile processing)."""
if not os.path.exists(self.output):
os.makedirs(self.output)
if self.options.profile == 'mercator':
(south, west) = self.mercator.MetersToLatLon(self.ominx,
self.ominy)
(north, east) = self.mercator.MetersToLatLon(self.omaxx,
self.omaxy)
(south, west) = (max(-85.05112878, south), max(-180.0,
west))
(north, east) = (min(85.05112878, north), min(180.0, east))
self.swne = (south, west, north, east)
# Generate googlemaps.html
if self.options.webviewer in ('all', 'google') \
and self.options.profile == 'mercator':
if not self.options.resume \
or not os.path.exists(os.path.join(self.output,
'googlemaps.html')):
f = open(os.path.join(self.output, 'googlemaps.html'
), 'w')
f.write(self.generate_googlemaps())
f.close()
# Generate openlayers.html
if self.options.webviewer in ('all', 'openlayers'):
if not self.options.resume \
or not os.path.exists(os.path.join(self.output,
'openlayers.html')):
f = open(os.path.join(self.output, 'openlayers.html'
), 'w')
f.write(self.generate_openlayers())
f.close()
elif self.options.profile == 'geodetic':
(west, south) = (self.ominx, self.ominy)
(east, north) = (self.omaxx, self.omaxy)
(south, west) = (max(-90.0, south), max(-180.0, west))
(north, east) = (min(90.0, north), min(180.0, east))
self.swne = (south, west, north, east)
# Generate openlayers.html
if self.options.webviewer in ('all', 'openlayers'):
if not self.options.resume \
or not os.path.exists(os.path.join(self.output,
'openlayers.html')):
f = open(os.path.join(self.output, 'openlayers.html'
), 'w')
f.write(self.generate_openlayers())
f.close()
elif self.options.profile == 'raster':
(west, south) = (self.ominx, self.ominy)
(east, north) = (self.omaxx, self.omaxy)
self.swne = (south, west, north, east)
# Generate openlayers.html
if self.options.webviewer in ('all', 'openlayers'):
if not self.options.resume \
or not os.path.exists(os.path.join(self.output,
'openlayers.html')):
f = open(os.path.join(self.output, 'openlayers.html'
), 'w')
f.write(self.generate_openlayers())
f.close()
# Generate tilemapresource.xml.
if not self.options.resume \
or not os.path.exists(os.path.join(self.output,
'tilemapresource.xml')):
f = open(os.path.join(self.output, 'tilemapresource.xml'),
'w')
f.write(self.generate_tilemapresource())
f.close()
if self.kml:
# TODO: Maybe problem for not automatically generated tminz
# The root KML should contain links to all tiles in the tminz level
children = []
(xmin, ymin, xmax, ymax) = self.tminmax[self.tminz]
for x in range(xmin, xmax + 1):
for y in range(ymin, ymax + 1):
children.append([x, y, self.tminz])
# Generate Root KML
if self.kml:
if not self.options.resume \
or not os.path.exists(os.path.join(self.output,
'doc.kml')):
f = open(os.path.join(self.output, 'doc.kml'), 'w')
f.write(self.generate_kml(None, None, None,
children))
f.close()
# -------------------------------------------------------------------------
def generate_base_tiles(self):
"""Generation of the base tiles (the lowest in the pyramid) directly from the input raster"""
print('Generating Base Tiles:')
if self.options.verbose:
# mx, my = self.out_gt[0], self.out_gt[3] # OriginX, OriginY
# px, py = self.mercator.MetersToPixels( mx, my, self.tmaxz)
# print "Pixel coordinates:", px, py, (mx, my)
print('')
print('Tiles generated from the max zoom level:')
print('----------------------------------------')
print('')
# Set the bounds
(tminx, tminy, tmaxx, tmaxy) = self.tminmax[self.tmaxz]
# Just the center tile
# tminx = tminx+ (tmaxx - tminx)/2
# tminy = tminy+ (tmaxy - tminy)/2
# tmaxx = tminx
# tmaxy = tminy
ds = self.out_ds
tilebands = self.dataBandsCount + 1
querysize = self.querysize
if self.options.verbose:
print(('dataBandsCount: ', self.dataBandsCount))
print(('tilebands: ', tilebands))
# print tminx, tminy, tmaxx, tmaxy
tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy))
# print tcount
ti = 0
tz = self.tmaxz
yrange = list(range(tmaxy, tminy - 1, -1))
if self.options.leaflet:
yrange = list(range(tminy, tmaxy + 1))
for ty in yrange:
for tx in range(tminx, tmaxx + 1):
if self.stopped:
break
ti += 1
tilefilename = os.path.join(self.output, str(tz),
str(tx), '%s.%s' % (ty, self.tileext))
if self.options.verbose:
print((ti, '/', tcount, tilefilename)) # , "( TileMapService: z / x / y )"
if self.options.resume and os.path.exists(tilefilename):
if self.options.verbose:
print('Tile generation skiped because of --resume')
else:
self.progressbar(ti / float(tcount))
continue
# Create directories for the tile
if not os.path.exists(os.path.dirname(tilefilename)):
os.makedirs(os.path.dirname(tilefilename))
if self.options.profile == 'mercator':
# Tile bounds in EPSG:900913
b = self.mercator.TileBounds(tx, ty, tz)
elif self.options.profile == 'geodetic':
b = self.geodetic.TileBounds(tx, ty, tz)
# print "\tgdalwarp -ts 256 256 -te %s %s %s %s %s %s_%s_%s.tif" % ( b[0], b[1], b[2], b[3], "tiles.vrt", tz, tx, ty)
# Don't scale up by nearest neighbour, better change the querysize
# to the native resolution (and return smaller query tile) for scaling
if self.options.profile in ('mercator', 'geodetic'):
(rb, wb) = self.geo_query(ds, b[0], b[3], b[2],
b[1])
nativesize = wb[0] + wb[2] # Pixel size in the raster covering query geo extent
if self.options.verbose:
print(('\tNative Extent (querysize',
nativesize, '): ', rb, wb))
# Tile bounds in raster coordinates for ReadRaster query
(rb, wb) = self.geo_query(
ds,
b[0],
b[3],
b[2],
b[1],
querysize=querysize,
)
(rx, ry, rxsize, rysize) = rb
(wx, wy, wxsize, wysize) = wb
else:
# 'raster' profile:
tsize = int(self.tsize[tz]) # tilesize in raster coordinates for actual zoom
xsize = self.out_ds.RasterXSize # size of the raster in pixels
ysize = self.out_ds.RasterYSize
if tz >= self.nativezoom:
querysize = self.tilesize # int(2**(self.nativezoom-tz) * self.tilesize)
rx = tx * tsize
rxsize = 0
if tx == tmaxx:
rxsize = xsize % tsize
if rxsize == 0:
rxsize = tsize
rysize = 0
if ty == tmaxy:
rysize = ysize % tsize
if rysize == 0:
rysize = tsize
if self.options.leaflet:
ry = ty * tsize
else:
ry = ysize - ty * tsize - rysize
(wx, wy) = (0, 0)
(wxsize, wysize) = (int(rxsize / float(tsize)
* self.tilesize), int(rysize / float(tsize)
* self.tilesize))
if not self.options.leaflet:
if wysize != self.tilesize:
wy = self.tilesize - wysize
if self.options.verbose:
print(('\tReadRaster Extent: ', (rx, ry, rxsize,
rysize), (wx, wy, wxsize, wysize)))
# Query is in 'nearest neighbour' but can be bigger in then the tilesize
# We scale down the query to the tilesize by supplied algorithm.
# Tile dataset in memory
dstile = self.mem_drv.Create('', self.tilesize,
self.tilesize, tilebands)
data = ds.ReadRaster(
rx,
ry,
rxsize,
rysize,
wxsize,
wysize,
band_list=list(range(1, self.dataBandsCount + 1)),
)
alpha = self.alphaband.ReadRaster(
rx,
ry,
rxsize,
rysize,
wxsize,
wysize,
)
if self.tilesize == querysize:
# Use the ReadRaster result directly in tiles ('nearest neighbour' query)
dstile.WriteRaster(
wx,
wy,
wxsize,
wysize,
data,
band_list=list(range(1, self.dataBandsCount
+ 1)),
)
dstile.WriteRaster(
wx,
wy,
wxsize,
wysize,
alpha,
band_list=[tilebands],
)
else:
# Note: For source drivers based on WaveLet compression (JPEG2000, ECW, MrSID)
# the ReadRaster function returns high-quality raster (not ugly nearest neighbour)
# TODO: Use directly 'near' for WaveLet files
# Big ReadRaster query in memory scaled to the tilesize - all but 'near' algo
dsquery = self.mem_drv.Create('', querysize,
querysize, tilebands)
# TODO: fill the null value in case a tile without alpha is produced (now only png tiles are supported)
# for i in range(1, tilebands+1):
# dsquery.GetRasterBand(1).Fill(tilenodata)
dsquery.WriteRaster(
wx,
wy,
wxsize,
wysize,
data,
band_list=list(range(1, self.dataBandsCount
+ 1)),
)
dsquery.WriteRaster(
wx,
wy,
wxsize,
wysize,
alpha,
band_list=[tilebands],
)
self.scale_query_to_tile(dsquery, dstile,
tilefilename)
del dsquery
del data
if self.options.resampling != 'antialias':
# Write a copy of tile to png/jpg
self.out_drv.CreateCopy(tilefilename, dstile,
strict=0)
del dstile
# Create a KML file for this tile.
if self.kml:
kmlfilename = os.path.join(self.output, str(tz),
str(tx), '%d.kml' % ty)
if not self.options.resume \
or not os.path.exists(kmlfilename):
f = open(kmlfilename, 'w')
f.write(self.generate_kml(tx, ty, tz))
f.close()
if not self.options.verbose:
self.progressbar(ti / float(tcount))
# -------------------------------------------------------------------------
def generate_overview_tiles(self):
"""Generation of the overview tiles (higher in the pyramid) based on existing tiles"""
print('Generating Overview Tiles:')
tilebands = self.dataBandsCount + 1
# Usage of existing tiles: from 4 underlying tiles generate one as overview.
tcount = 0
for tz in range(self.tmaxz - 1, self.tminz - 1, -1):
(tminx, tminy, tmaxx, tmaxy) = self.tminmax[tz]
tcount += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy
- tminy))
ti = 0
# querysize = tilesize * 2
for tz in range(self.tmaxz - 1, self.tminz - 1, -1):
(tminx, tminy, tmaxx, tmaxy) = self.tminmax[tz]
yrange = list(range(tmaxy, tminy - 1, -1))
if self.options.leaflet:
yrange = list(range(tminy, tmaxy + 1))
for ty in yrange:
for tx in range(tminx, tmaxx + 1):
if self.stopped:
break
ti += 1
tilefilename = os.path.join(self.output, str(tz),
str(tx), '%s.%s' % (ty, self.tileext))
if self.options.verbose:
print((ti, '/', tcount, tilefilename)) # , "( TileMapService: z / x / y )"
if self.options.resume \
and os.path.exists(tilefilename):
if self.options.verbose:
print('Tile generation skiped because of --resume')
else:
self.progressbar(ti / float(tcount))
continue
# Create directories for the tile
if not os.path.exists(os.path.dirname(tilefilename)):
os.makedirs(os.path.dirname(tilefilename))
dsquery = self.mem_drv.Create('', 2
* self.tilesize, 2 * self.tilesize,
tilebands)
# TODO: fill the null value
# for i in range(1, tilebands+1):
# dsquery.GetRasterBand(1).Fill(tilenodata)
dstile = self.mem_drv.Create('', self.tilesize,
self.tilesize, tilebands)
# TODO: Implement more clever walking on the tiles with cache functionality
# probably walk should start with reading of four tiles from top left corner
# Hilbert curve
children = []
# Read the tiles and write them to query window
for y in range(2 * ty, 2 * ty + 2):
for x in range(2 * tx, 2 * tx + 2):
(minx, miny, maxx, maxy) = self.tminmax[tz
+ 1]
if x >= minx and x <= maxx and y >= miny \
and y <= maxy:
dsquerytile = \
gdal.Open(os.path.join(self.output,
str(tz + 1), str(x), '%s.%s'
% (y, self.tileext)),
gdal.GA_ReadOnly)
if self.options.leaflet:
if ty:
tileposy = y % (2 * ty) \
* self.tilesize
elif ty == 0 and y == 1:
tileposy = self.tilesize
else:
tileposy = 0
else:
if ty == 0 and y == 1 or ty != 0 \
and y % (2 * ty) != 0:
tileposy = 0
else:
tileposy = self.tilesize
if tx:
tileposx = x % (2 * tx) \
* self.tilesize
elif tx == 0 and x == 1:
tileposx = self.tilesize
else:
tileposx = 0
dsquery.WriteRaster(
tileposx,
tileposy,
self.tilesize,
self.tilesize,
dsquerytile.ReadRaster(0, 0,
self.tilesize, self.tilesize),
band_list=list(range(1, tilebands
+ 1)),
)
children.append([x, y, tz + 1])
self.scale_query_to_tile(dsquery, dstile,
tilefilename)
# Write a copy of tile to png/jpg
if self.options.resampling != 'antialias':
# Write a copy of tile to png/jpg
self.out_drv.CreateCopy(tilefilename, dstile,
strict=0)
if self.options.verbose:
print((
'\tbuild from zoom',
tz + 1,
' tiles:',
(2 * tx, 2 * ty),
(2 * tx + 1, 2 * ty),
(2 * tx, 2 * ty + 1),
(2 * tx + 1, 2 * ty + 1),
))
# Create a KML file for this tile.
if self.kml:
f = open(os.path.join(self.output,
'%d/%d/%d.kml' % (tz, tx, ty)), 'w')
f.write(self.generate_kml(tx, ty, tz, children))
f.close()
if not self.options.verbose:
self.progressbar(ti / float(tcount))
# -------------------------------------------------------------------------
def geo_query(
self,
ds,
ulx,
uly,
lrx,
lry,
querysize=0,
):
"""For given dataset and query in cartographic coordinates
returns parameters for ReadRaster() in raster coordinates and
x/y shifts (for border tiles). If the querysize is not given, the
extent is returned in the native resolution of dataset ds."""
geotran = ds.GetGeoTransform()
rx = int((ulx - geotran[0]) / geotran[1] + 0.001)
ry = int((uly - geotran[3]) / geotran[5] + 0.001)
rxsize = int((lrx - ulx) / geotran[1] + 0.5)
rysize = int((lry - uly) / geotran[5] + 0.5)
if not querysize:
(wxsize, wysize) = (rxsize, rysize)
else:
(wxsize, wysize) = (querysize, querysize)
# Coordinates should not go out of the bounds of the raster
wx = 0
if rx < 0:
rxshift = abs(rx)
wx = int(wxsize * (float(rxshift) / rxsize))
wxsize = wxsize - wx
rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize))
rx = 0
if rx + rxsize > ds.RasterXSize:
wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize))
rxsize = ds.RasterXSize - rx
wy = 0
if ry < 0:
ryshift = abs(ry)
wy = int(wysize * (float(ryshift) / rysize))
wysize = wysize - wy
rysize = rysize - int(rysize * (float(ryshift) / rysize))
ry = 0
if ry + rysize > ds.RasterYSize:
wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize))
rysize = ds.RasterYSize - ry
return ((rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize))
# -------------------------------------------------------------------------
def scale_query_to_tile(
self,
dsquery,
dstile,
tilefilename='',
):
"""Scales down query dataset to the tile dataset"""
querysize = dsquery.RasterXSize
tilesize = dstile.RasterXSize
tilebands = dstile.RasterCount
if self.options.resampling == 'average':
# Function: gdal.RegenerateOverview()
for i in range(1, tilebands + 1):
# Black border around NODATA
# if i != 4:
# dsquery.GetRasterBand(i).SetNoDataValue(0)
res = gdal.RegenerateOverview(dsquery.GetRasterBand(i),
dstile.GetRasterBand(i), 'average')
if res != 0:
self.error('RegenerateOverview() failed on %s, error %d'
% (tilefilename, res))
elif self.options.resampling == 'antialias':
# Scaling by PIL (Python Imaging Library) - improved Lanczos
array = numpy.zeros((querysize, querysize, tilebands),
numpy.uint8)
for i in range(tilebands):
array[:, :, i] = \
gdalarray.BandReadAsArray(dsquery.GetRasterBand(i
+ 1), 0, 0, querysize, querysize)
im = Image.fromarray(array, 'RGBA') # Always four bands
im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
if os.path.exists(tilefilename):
im0 = Image.open(tilefilename)
im1 = Image.composite(im1, im0, im1)
im1.save(tilefilename, self.tiledriver)
else:
# Other algorithms are implemented by gdal.ReprojectImage().
dsquery.SetGeoTransform((
0.0,
tilesize / float(querysize),
0.0,
0.0,
0.0,
tilesize / float(querysize),
))
dstile.SetGeoTransform((
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
))
res = gdal.ReprojectImage(dsquery, dstile, None, None,
self.resampling)
if res != 0:
self.error('ReprojectImage() failed on %s, error %d'
% (tilefilename, res))
# -------------------------------------------------------------------------
def generate_tilemapresource(self):
"""
Template for tilemapresource.xml. Returns filled string. Expected variables:
title, north, south, east, west, isepsg4326, projection, publishurl,
zoompixels, tilesize, tileformat, profile
"""
args = {}
args['title'] = self.options.title
(args['south'], args['west'], args['north'], args['east']) = \
self.swne
args['tilesize'] = self.tilesize
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url
args['profile'] = self.options.profile
if self.options.profile == 'mercator':
args['srs'] = 'EPSG:900913'
elif self.options.profile == 'geodetic':
args['srs'] = 'EPSG:4326'
elif self.options.s_srs:
args['srs'] = self.options.s_srs
elif self.out_srs:
args['srs'] = self.out_srs.ExportToWkt()
else:
args['srs'] = ''
s = \
"""<?xml version="1.0" encoding="utf-8"?>
<TileMap version="1.0.0" tilemapservice="http://tms.osgeo.org/1.0.0">
<Title>%(title)s</Title>
<Abstract></Abstract>
<SRS>%(srs)s</SRS>
<BoundingBox minx="%(west).14f" miny="%(south).14f" maxx="%(east).14f" maxy="%(north).14f"/>
<Origin x="%(west).14f" y="%(south).14f"/>
<TileFormat width="%(tilesize)d" height="%(tilesize)d" mime-type="image/%(tileformat)s" extension="%(tileformat)s"/>
<TileSets profile="%(profile)s">
""" \
% args
for z in range(self.tminz, self.tmaxz + 1):
if self.options.profile == 'raster':
s += \
""" <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" \
% (args['publishurl'], z, 2 ** (self.nativezoom
- z) * self.out_gt[1], z)
elif self.options.profile == 'mercator':
s += \
""" <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" \
% (args['publishurl'], z, 156543.0339 / 2 ** z, z)
elif self.options.profile == 'geodetic':
s += \
""" <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" \
% (args['publishurl'], z, 0.703125 / 2 ** z, z)
s += """ </TileSets>
</TileMap>
"""
return s
# -------------------------------------------------------------------------
def generate_kml(
self,
tx,
ty,
tz,
children=[],
**args
):
"""
Template for the KML. Returns filled string.
"""
(args['tx'], args['ty'], args['tz']) = (tx, ty, tz)
args['tileformat'] = self.tileext
if 'tilesize' not in args:
args['tilesize'] = self.tilesize
if 'minlodpixels' not in args:
args['minlodpixels'] = int(args['tilesize'] / 2) # / 2.56) # default 128
if 'maxlodpixels' not in args:
args['maxlodpixels'] = int(args['tilesize'] * 8) # 1.7) # default 2048 (used to be -1)
if children == []:
args['maxlodpixels'] = -1
if tx == None:
tilekml = False
args['title'] = self.options.title
else:
tilekml = True
args['title'] = '%d/%d/%d.kml' % (tz, tx, ty)
(args['south'], args['west'], args['north'], args['east'
]) = self.tileswne(tx, ty, tz)
if tx == 0:
args['drawOrder'] = 2 * tz + 1
elif tx != None:
args['drawOrder'] = 2 * tz
else:
args['drawOrder'] = 0
url = self.options.url
if not url:
if tilekml:
url = '../../'
else:
url = ''
s = \
"""<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>%(title)s</name>
<description></description>
<Style>
<ListStyle id="hideChildren">
<listItemType>checkHideChildren</listItemType>
</ListStyle>
</Style>""" \
% args
if tilekml:
s += \
"""
<Region>
<LatLonAltBox>
<north>%(north).14f</north>
<south>%(south).14f</south>
<east>%(east).14f</east>
<west>%(west).14f</west>
</LatLonAltBox>
<Lod>
<minLodPixels>%(minlodpixels)d</minLodPixels>
<maxLodPixels>%(maxlodpixels)d</maxLodPixels>
</Lod>
</Region>
<GroundOverlay>
<drawOrder>%(drawOrder)d</drawOrder>
<Icon>
<href>%(ty)d.%(tileformat)s</href>
</Icon>
<LatLonBox>
<north>%(north).14f</north>
<south>%(south).14f</south>
<east>%(east).14f</east>
<west>%(west).14f</west>
</LatLonBox>
</GroundOverlay>
""" \
% args
for (cx, cy, cz) in children:
(csouth, cwest, cnorth, ceast) = self.tileswne(cx, cy, cz)
s += \
"""
<NetworkLink>
<name>%d/%d/%d.%s</name>
<Region>
<LatLonAltBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.14f</east>
<west>%.14f</west>
</LatLonAltBox>
<Lod>
<minLodPixels>%d</minLodPixels>
<maxLodPixels>-1</maxLodPixels>
</Lod>
</Region>
<Link>
<href>%s%d/%d/%d.kml</href>
<viewRefreshMode>onRegion</viewRefreshMode>
<viewFormat/>
</Link>
</NetworkLink>
""" \
% (
cz,
cx,
cy,
args['tileformat'],
cnorth,
csouth,
ceast,
cwest,
args['minlodpixels'],
url,
cz,
cx,
cy,
)
s += """ </Document>
</kml>
"""
return s
# -------------------------------------------------------------------------
def generate_googlemaps(self):
"""
Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile.
It returns filled string. Expected variables:
title, googlemapskey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl
"""
args = {}
args['title'] = self.options.title
args['googlemapskey'] = self.options.googlekey
(args['south'], args['west'], args['north'], args['east']) = \
self.swne
args['minzoom'] = self.tminz
args['maxzoom'] = self.tmaxz
args['tilesize'] = self.tilesize
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url
args['copyright'] = self.options.copyright
s = \
"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml">
<head>
<title>%(title)s</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<meta http-equiv='imagetoolbar' content='no'/>
<style type="text/css"> v\:* {behavior:url(#default#VML);}
html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; }
body { margin: 10px; background: #fff; }
h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; }
#header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; }
#subheader { height: 12px; text-align: right; font-size: 10px; color: #555;}
#map { height: 95%%; border: 1px solid #888; }
</style>
<script src='http://maps.google.com/maps?file=api&amp;v=2&amp;key=%(googlemapskey)s'></script>
<script>
//<![CDATA[
/*
* Constants for given map
* TODO: read it from tilemapresource.xml
*/
var mapBounds = new GLatLngBounds(new GLatLng(%(south)s, %(west)s), new GLatLng(%(north)s, %(east)s));
var mapMinZoom = %(minzoom)s;
var mapMaxZoom = %(maxzoom)s;
var opacity = 0.75;
var map;
var hybridOverlay;
/*
* Create a Custom Opacity GControl
* http://www.maptiler.org/google-maps-overlay-opacity-control/
*/
var CTransparencyLENGTH = 58;
// maximum width that the knob can move (slide width minus knob width)
function CTransparencyControl( overlay ) {
this.overlay = overlay;
this.opacity = overlay.getTileLayer().getOpacity();
}
CTransparencyControl.prototype = new GControl();
// This function positions the slider to match the specified opacity
CTransparencyControl.prototype.setSlider = function(pos) {
var left = Math.round((CTransparencyLENGTH*pos));
this.slide.left = left;
this.knob.style.left = left+"px";
this.knob.style.top = "0px";
}
// This function reads the slider and sets the overlay opacity level
CTransparencyControl.prototype.setOpacity = function() {
// set the global variable
opacity = this.slide.left/CTransparencyLENGTH;
this.map.clearOverlays();
this.map.addOverlay(this.overlay, { zPriority: 0 });
if (this.map.getCurrentMapType() == G_HYBRID_MAP) {
this.map.addOverlay(hybridOverlay);
}
}
// This gets called by the API when addControl(new CTransparencyControl())
CTransparencyControl.prototype.initialize = function(map) {
var that=this;
this.map = map;
// Is this MSIE, if so we need to use AlphaImageLoader
var agent = navigator.userAgent.toLowerCase();
if ((agent.indexOf("msie") > -1) && (agent.indexOf("opera") < 1)){this.ie = true} else {this.ie = false}
// create the background graphic as a <div> containing an image
var container = document.createElement("div");
container.style.width="70px";
container.style.height="21px";
// Handle transparent PNG files in MSIE
if (this.ie) {
var loader = "filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');";
container.innerHTML = '<div style="height:21px; width:70px; ' +loader+ '" ></div>';
} else {
container.innerHTML = '<div style="height:21px; width:70px; background-image: url(http://www.maptiler.org/img/opacity-slider.png)" ></div>';
}
// create the knob as a GDraggableObject
// Handle transparent PNG files in MSIE
if (this.ie) {
var loader = "progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');";
this.knob = document.createElement("div");
this.knob.style.height="21px";
this.knob.style.width="13px";
this.knob.style.overflow="hidden";
this.knob_img = document.createElement("div");
this.knob_img.style.height="21px";
this.knob_img.style.width="83px";
this.knob_img.style.filter=loader;
this.knob_img.style.position="relative";
this.knob_img.style.left="-70px";
this.knob.appendChild(this.knob_img);
} else {
this.knob = document.createElement("div");
this.knob.style.height="21px";
this.knob.style.width="13px";
this.knob.style.backgroundImage="url(http://www.maptiler.org/img/opacity-slider.png)";
this.knob.style.backgroundPosition="-70px 0px";
}
container.appendChild(this.knob);
this.slide=new GDraggableObject(this.knob, {container:container});
this.slide.setDraggableCursor('pointer');
this.slide.setDraggingCursor('pointer');
this.container = container;
// attach the control to the map
map.getContainer().appendChild(container);
// init slider
this.setSlider(this.opacity);
// Listen for the slider being moved and set the opacity
GEvent.addListener(this.slide, "dragend", function() {that.setOpacity()});
//GEvent.addListener(this.container, "click", function( x, y ) { alert(x, y) });
return container;
}
// Set the default position for the control
CTransparencyControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(7, 47));
}
/*
* Full-screen Window Resize
*/
function getWindowHeight() {
if (self.innerHeight) return self.innerHeight;
if (document.documentElement && document.documentElement.clientHeight)
return document.documentElement.clientHeight;
if (document.body) return document.body.clientHeight;
return 0;
}
function getWindowWidth() {
if (self.innerWidth) return self.innerWidth;
if (document.documentElement && document.documentElement.clientWidth)
return document.documentElement.clientWidth;
if (document.body) return document.body.clientWidth;
return 0;
}
function resize() {
var map = document.getElementById("map");
var header = document.getElementById("header");
var subheader = document.getElementById("subheader");
map.style.height = (getWindowHeight()-80) + "px";
map.style.width = (getWindowWidth()-20) + "px";
header.style.width = (getWindowWidth()-20) + "px";
subheader.style.width = (getWindowWidth()-20) + "px";
// map.checkResize();
}
/*
* Main load function:
*/
function load() {
if (GBrowserIsCompatible()) {
// Bug in the Google Maps: Copyright for Overlay is not correctly displayed
var gcr = GMapType.prototype.getCopyrights;
GMapType.prototype.getCopyrights = function(bounds,zoom) {
return ["%(copyright)s"].concat(gcr.call(this,bounds,zoom));
}
map = new GMap2( document.getElementById("map"), { backgroundColor: '#fff' } );
map.addMapType(G_PHYSICAL_MAP);
map.setMapType(G_PHYSICAL_MAP);
map.setCenter( mapBounds.getCenter(), map.getBoundsZoomLevel( mapBounds ));
hybridOverlay = new GTileLayerOverlay( G_HYBRID_MAP.getTileLayers()[1] );
GEvent.addListener(map, "maptypechanged", function() {
if (map.getCurrentMapType() == G_HYBRID_MAP) {
map.addOverlay(hybridOverlay);
} else {
map.removeOverlay(hybridOverlay);
}
} );
var tilelayer = new GTileLayer(GCopyrightCollection(''), mapMinZoom, mapMaxZoom);
var mercator = new GMercatorProjection(mapMaxZoom+1);
tilelayer.getTileUrl = function(tile,zoom) {
if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) {
return "http://www.maptiler.org/img/none.png";
}
var ymax = 1 << zoom;
var y = ymax - tile.y -1;
var tileBounds = new GLatLngBounds(
mercator.fromPixelToLatLng( new GPoint( (tile.x)*256, (tile.y+1)*256 ) , zoom ),
mercator.fromPixelToLatLng( new GPoint( (tile.x+1)*256, (tile.y)*256 ) , zoom )
);
if (mapBounds.intersects(tileBounds)) {
return zoom+"/"+tile.x+"/"+y+".png";
} else {
return "http://www.maptiler.org/img/none.png";
}
}
// IE 7-: support for PNG alpha channel
// Unfortunately, the opacity for whole overlay is then not changeable, either or...
tilelayer.isPng = function() { return true;};
tilelayer.getOpacity = function() { return opacity; }
overlay = new GTileLayerOverlay( tilelayer );
map.addOverlay(overlay);
map.addControl(new GLargeMapControl());
map.addControl(new GHierarchicalMapTypeControl());
map.addControl(new CTransparencyControl( overlay ));
""" \
% args
if self.kml:
s += \
"""
map.addMapType(G_SATELLITE_3D_MAP);
map.getEarthInstance(getEarthInstanceCB);
"""
s += \
"""
map.enableContinuousZoom();
map.enableScrollWheelZoom();
map.setMapType(G_HYBRID_MAP);
}
resize();
}
"""
if self.kml:
s += \
"""
function getEarthInstanceCB(object) {
var ge = object;
if (ge) {
var url = document.location.toString();
url = url.substr(0,url.lastIndexOf('/'))+'/doc.kml';
var link = ge.createLink("");
if ("%(publishurl)s") { link.setHref("%(publishurl)s/doc.kml") }
else { link.setHref(url) };
var networkLink = ge.createNetworkLink("");
networkLink.setName("TMS Map Overlay");
networkLink.setFlyToView(true);
networkLink.setLink(link);
ge.getFeatures().appendChild(networkLink);
} else {
// alert("You should open a KML in Google Earth");
// add div with the link to generated KML... - maybe JavaScript redirect to the URL of KML?
}
}
""" \
% args
s += \
"""
onresize=function(){ resize(); };
//]]>
</script>
</head>
<body onload="load()">
<div id="header"><h1>%(title)s</h1></div>
<div id="subheader">Generated by <a href="http://www.maptiler.org/">MapTiler</a>/<a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>
<!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU -->
</div>
<div id="map"></div>
</body>
</html>
""" \
% args
return s
# -------------------------------------------------------------------------
def generate_openlayers(self):
"""
Template for openlayers.html implementing overlay of available Spherical Mercator layers.
It returns filled string. Expected variables:
title, bingkey, north, south, east, west, minzoom, maxzoom, tilesize, tileformat, publishurl
"""
args = {}
args['title'] = self.options.title
args['bingkey'] = self.options.bingkey
(args['south'], args['west'], args['north'], args['east']) = \
self.swne
args['minzoom'] = self.tminz
args['maxzoom'] = self.tmaxz
args['tilesize'] = self.tilesize
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url
args['copyright'] = self.options.copyright
if self.options.tmscompatible:
args['tmsoffset'] = '-1'
else:
args['tmsoffset'] = ''
if self.options.profile == 'raster':
args['rasterzoomlevels'] = self.tmaxz + 1
args['rastermaxresolution'] = 2 ** self.nativezoom \
* self.out_gt[1]
s = \
"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
<head>
<title>%(title)s</title>
<meta http-equiv='imagetoolbar' content='no'/>
<style type="text/css"> v\:* {behavior:url(#default#VML);}
html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; }
body { margin: 10px; background: #fff; }
h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; }
#header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; }
#subheader { height: 12px; text-align: right; font-size: 10px; color: #555;}
#map { height: 95%%; border: 1px solid #888; }
.olImageLoadError { display: none; }
.olControlLayerSwitcher .layersDiv { border-radius: 10px 0 0 10px; }
</style>""" \
% args
if self.options.profile == 'mercator':
s += \
"""
<script src='http://maps.google.com/maps/api/js?sensor=false&v=3.7'></script>""" \
% args
s += \
"""
<script src="http://www.openlayers.org/api/2.12/OpenLayers.js"></script>
<script>
var map;
var mapBounds = new OpenLayers.Bounds( %(west)s, %(south)s, %(east)s, %(north)s);
var mapMinZoom = %(minzoom)s;
var mapMaxZoom = %(maxzoom)s;
var emptyTileURL = "http://www.maptiler.org/img/none.png";
OpenLayers.IMAGE_RELOAD_ATTEMPTS = 3;
function init(){""" \
% args
if self.options.profile == 'mercator':
s += \
"""
var options = {
div: "map",
controls: [],
projection: "EPSG:900913",
displayProjection: new OpenLayers.Projection("EPSG:4326"),
numZoomLevels: 20
};
map = new OpenLayers.Map(options);
// Create Google Mercator layers
var gmap = new OpenLayers.Layer.Google("Google Streets",
{
type: google.maps.MapTypeId.ROADMAP,
sphericalMercator: true
});
var gsat = new OpenLayers.Layer.Google("Google Satellite",
{
type: google.maps.MapTypeId.SATELLITE,
sphericalMercator: true
});
var ghyb = new OpenLayers.Layer.Google("Google Hybrid",
{
type: google.maps.MapTypeId.HYBRID,
sphericalMercator: true
});
var gter = new OpenLayers.Layer.Google("Google Terrain",
{
type: google.maps.MapTypeId.TERRAIN,
sphericalMercator: true
});
// Create Bing layers
var broad = new OpenLayers.Layer.Bing({
name: "Bing Roads",
key: "%(bingkey)s",
type: "Road",
sphericalMercator: true
});
var baer = new OpenLayers.Layer.Bing({
name: "Bing Aerial",
key: "%(bingkey)s",
type: "Aerial",
sphericalMercator: true
});
var bhyb = new OpenLayers.Layer.Bing({
name: "Bing Hybrid",
key: "%(bingkey)s",
type: "AerialWithLabels",
sphericalMercator: true
});
// Create OSM layer
var osm = new OpenLayers.Layer.OSM("OpenStreetMap");
// create TMS Overlay layer
var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "",
{
serviceVersion: '.',
layername: '.',
alpha: true,
type: '%(tileformat)s',
isBaseLayer: false,
getURL: getURL
});
if (OpenLayers.Util.alphaHack() == false) {
tmsoverlay.setOpacity(0.7);
}
map.addLayers([gmap, gsat, ghyb, gter,
broad, baer, bhyb,
osm, tmsoverlay]);
var switcherControl = new OpenLayers.Control.LayerSwitcher();
map.addControl(switcherControl);
switcherControl.maximizeControl();
map.zoomToExtent(mapBounds.transform(map.displayProjection, map.projection));
""" \
% args
elif self.options.profile == 'geodetic':
s += \
"""
var options = {
div: "map",
controls: [],
projection: "EPSG:4326"
};
map = new OpenLayers.Map(options);
var wms = new OpenLayers.Layer.WMS("VMap0",
"http://tilecache.osgeo.org/wms-c/Basic.py?",
{
layers: 'basic',
format: 'image/png'
}
);
var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "",
{
serviceVersion: '.',
layername: '.',
alpha: true,
type: '%(tileformat)s',
isBaseLayer: false,
getURL: getURL
});
if (OpenLayers.Util.alphaHack() == false) {
tmsoverlay.setOpacity(0.7);
}
map.addLayers([wms,tmsoverlay]);
var switcherControl = new OpenLayers.Control.LayerSwitcher();
map.addControl(switcherControl);
switcherControl.maximizeControl();
map.zoomToExtent(mapBounds);
""" \
% args
elif self.options.profile == 'raster':
s += \
"""
var options = {
div: "map",
controls: [],
maxExtent: new OpenLayers.Bounds(%(west)s, %(south)s, %(east)s, %(north)s),
maxResolution: %(rastermaxresolution)f,
numZoomLevels: %(rasterzoomlevels)d
};
map = new OpenLayers.Map(options);
var layer = new OpenLayers.Layer.TMS("TMS Layer", "",
{
serviceVersion: '.',
layername: '.',
alpha: true,
type: '%(tileformat)s',
getURL: getURL
});
map.addLayer(layer);
map.zoomToExtent(mapBounds);
""" \
% args
s += \
"""
map.addControls([new OpenLayers.Control.PanZoomBar(),
new OpenLayers.Control.Navigation(),
new OpenLayers.Control.MousePosition(),
new OpenLayers.Control.ArgParser(),
new OpenLayers.Control.Attribution()]);
}
""" \
% args
if self.options.profile == 'mercator':
s += \
"""
function getURL(bounds) {
bounds = this.adjustBounds(bounds);
var res = this.getServerResolution();
var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
var z = this.getServerZoom();
if (this.map.baseLayer.CLASS_NAME === 'OpenLayers.Layer.Bing') {
z+=1;
}
var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type;
var url = this.url;
if (OpenLayers.Util.isArray(url)) {
url = this.selectUrl(path, url);
}
if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
return url + path;
} else {
return emptyTileURL;
}
}
""" \
% args
elif self.options.profile == 'geodetic':
s += \
"""
function getURL(bounds) {
bounds = this.adjustBounds(bounds);
var res = this.getServerResolution();
var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
var z = this.getServerZoom()%(tmsoffset)s;
var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type;
var url = this.url;
if (OpenLayers.Util.isArray(url)) {
url = this.selectUrl(path, url);
}
if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
return url + path;
} else {
return emptyTileURL;
}
}
""" \
% args
elif self.options.profile == 'raster':
s += \
"""
function getURL(bounds) {
bounds = this.adjustBounds(bounds);
var res = this.getServerResolution();
var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
var z = this.getServerZoom();
var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type;
var url = this.url;
if (OpenLayers.Util.isArray(url)) {
url = this.selectUrl(path, url);
}
if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
return url + path;
} else {
return emptyTileURL;
}
}
""" \
% args
s += \
"""
function getWindowHeight() {
if (self.innerHeight) return self.innerHeight;
if (document.documentElement && document.documentElement.clientHeight)
return document.documentElement.clientHeight;
if (document.body) return document.body.clientHeight;
return 0;
}
function getWindowWidth() {
if (self.innerWidth) return self.innerWidth;
if (document.documentElement && document.documentElement.clientWidth)
return document.documentElement.clientWidth;
if (document.body) return document.body.clientWidth;
return 0;
}
function resize() {
var map = document.getElementById("map");
var header = document.getElementById("header");
var subheader = document.getElementById("subheader");
map.style.height = (getWindowHeight()-80) + "px";
map.style.width = (getWindowWidth()-20) + "px";
header.style.width = (getWindowWidth()-20) + "px";
subheader.style.width = (getWindowWidth()-20) + "px";
if (map.updateSize) { map.updateSize(); };
}
onresize=function(){ resize(); };
</script>
</head>
<body onload="init()">
<div id="header"><h1>%(title)s</h1></div>
<div id="subheader">Generated by <a href="http://www.maptiler.org/">MapTiler</a>/<a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>
<!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU -->
</div>
<div id="map"></div>
<script type="text/javascript" >resize()</script>
</body>
</html>""" \
% args
return s
# =============================================================================
# =============================================================================
# =============================================================================
if __name__ == '__main__':
argv = gdal.GeneralCmdLineProcessor(sys.argv)
if argv:
gdal2tiles = GDAL2Tiles(argv[1:])
gdal2tiles.process()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment