Skip to content

Instantly share code, notes, and snippets.

@jerrymarino
Forked from seriyps/walker_alias.erl
Created September 7, 2013 21:52
Show Gist options
  • Save jerrymarino/6479674 to your computer and use it in GitHub Desktop.
Save jerrymarino/6479674 to your computer and use it in GitHub Desktop.
%%% @author Sergey Prokhorov <[email protected]>
%%% @copyright (C) 2013, Sergey Prokhorov
%%% @doc
%%% Walker alias method - efficient random selection with defined probabilities.
%%% <http://en.wikipedia.org/wiki/Alias_method>
%%%
%%% > ProbabilityValueList = [{10, a}, {20, b}, {30, c}, {40, d}],
%%% > WalkerVectors = walker_alias:build(ProbabilityValueList),
%%% > RandomValue = walker_alias:choice(WalkerVectors).
%%%
%%% Probability values may be any integers
%%% RandomValue will contain 'd' in 40% cases, 'c' in 30% and so on.
%%% WalkerVectors is reusable struct - you can call choice/1 on it for many
%%% times.
%%%
%%% Ported from Python implementation:
%%% <http://code.activestate.com/recipes/576564-walkers-alias-method-for-random-objects-with-diffe/>
%%% Other implementations:
%%% Common Lisp: http://prxq.wordpress.com/2006/04/23/more-on-the-alias-method/
%%% Ruby: https://github.com/cantino/walker_method
%%% @end
%%% Created : 16 May 2013 by Sergey Prokhorov <[email protected]>
-module(walker_alias).
-export([build/1, choice/1]).
%% -export([dist_test/0]).
-type walker_vectors() :: {walker_vectors,
non_neg_integer(),
array(),
array(),
array()}.
-spec build([{non_neg_integer(), any()}]) -> walker_vectors().
build(WeightedList) ->
{Weights, Keys} = lists:foldl(fun({W, K}, {WL, KL}) ->
{[W | WL], [K | KL]}
end, {[], []}, WeightedList),
build(lists:reverse(Weights), lists:reverse(Keys)).
-spec build([non_neg_integer()], [any()]) -> walker_vectors().
build(Weights, Keys) ->
N = length(Weights),
Sumw = lists:sum(Weights),
Prob = [W * N / Sumw || W <- Weights],
{Short, Long} = split_short_long(Prob),
{Inx, Prob2} = build_vectors(Short, Long, array:new(N), array:from_list(Prob)),
{walker_vectors, N, array:from_list(Keys), Inx, Prob2}.
split_short_long(Prob) ->
SplitFun = fun(V, {Sh, Lo, I}) when V < 1 ->
{[I | Sh], Lo, I + 1};
(V, {Sh, Lo, I}) when V > 1 ->
{Sh, [I | Lo], I + 1}
end,
{Short, Long, _} = lists:foldl(SplitFun, {[], [], 0}, Prob),
{Short, Long}.
build_vectors(S, L, Inx, Prob) when (S == []) orelse (L == []) ->
{Inx, Prob};
build_vectors([J | Short], [K | Long], Inx, Prob) ->
NewInx = array:set(J, K, Inx),
ProbJ = array:get(J, Prob),
ProbK = array:get(K, Prob),
NewProbK = ProbK - (1 - ProbJ),
NewProb = array:set(K, NewProbK, Prob),
{NewShort, NewLong} = case NewProbK < 1 of
true -> {[K | Short], Long};
false -> {Short, [K | Long]}
end,
build_vectors(NewShort, NewLong, NewInx, NewProb).
-spec choice(walker_vectors()) -> any().
choice({walker_vectors, N, Keys, Inx, Prob}) ->
J = crypto:rand_uniform(0, N),
U = crypto:rand_uniform(0, 100) / 100,
Idx = case U =< array:get(J, Prob) of
true -> J;
false -> array:get(J, Inx)
end,
array:get(Idx, Keys).
%% dist_test() ->
%% N = 1000,
%% RandWeights = [C || <<C>> <= crypto:rand_bytes(N)],
%% Iters = N * 100,
%% Keys = lists:seq(1, N),
%% KW = lists:zip(RandWeights, Keys),
%% Vectors = build(KW),
%% {Time, Res} = timer:tc(fun run_n_iterations/3, [Vectors, orddict:new(), Iters]),
%% %% io:format("KW:~n~p~nRes:~n~p~n", [KW, Res]),
%% io:format("Time: ~p Iters:~p~n", [Time, Iters]).
%% run_n_iterations(_, Dict, 0) ->
%% Dict;
%% run_n_iterations(Vect, Dict, N) ->
%% Val = choice(Vect),
%% run_n_iterations(Vect, orddict:update_counter(Val, 1, Dict), N - 1).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment