Created
August 3, 2021 21:30
-
-
Save jerryzh168/1c762e51ddec8c38e642380839c8303c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def forward(self, input): input_1 = input _0_conv1_input_scale_0 = getattr(self, "0_conv1_input_scale_0") _0_conv1_input_zero_point_0 = getattr(self, "0_conv1_input_zero_point_0") quantize_per_tensor = torch.quantize_per_tensor(input_1, _0_conv1_input_scale_0, _0_conv1_input_zero_point_0, torch.qint8); input_1 = _0_conv1_input_scale_0 = _0_conv1_input_zero_point_0 = None dequantize = quantize_per_tensor.dequantize(); quantize_per_tensor = None _0_conv1 = getattr(self, "0").conv1(dequantize) _0_conv1_output_scale_0 = getattr(self, "0_conv1_output_scale_0") _0_conv1_output_zero_point_0 = getattr(self, "0_conv1_output_zero_point_0") quantize_per_tensor_1 = torch.quantize_per_tensor(_0_conv1, _0_conv1_output_scale_0, _0_conv1_output_zero_point_0, torch.qint8); _0_co | |
nv1 = _0_conv1_output_scale_0 = _0_conv1_output_zero_point_0 = None | |
dequantize_1 = quantize_per_tensor_1.dequantize(); quantize_per_tensor_1 = None | |
_0_conv2 = getattr(self, "0").conv2(dequantize_1); dequantize_1 = None | |
_0_conv2_output_scale_0 = getattr(self, "0_conv2_output_scale_0") | |
_0_conv2_output_zero_point_0 = getattr(self, "0_conv2_output_zero_point_0") | |
quantize_per_tensor_2 = torch.quantize_per_tensor(_0_conv2, _0_conv2_output_scale_0, _0_conv2_output_zero_point_0, torch.qint8); _0_co | |
nv2 = _0_conv2_output_scale_0 = _0_conv2_output_zero_point_0 = None | |
dequantize_2 = quantize_per_tensor_2.dequantize(); quantize_per_tensor_2 = None | |
add = dequantize_2 + dequantize; dequantize_2 = dequantize = None | |
_0_relu_1 = getattr(self, "0").relu(add); add = None | |
_0_relu_output_scale_0 = getattr(self, "0_relu_output_scale_0") | |
_0_relu_output_zero_point_0 = getattr(self, "0_relu_output_zero_point_0") | |
quantize_per_tensor_3 = torch.quantize_per_tensor(_0_relu_1, _0_relu_output_scale_0, _0_relu_output_zero_point_0, torch.qint8); _0_rel | |
u_1 = _0_relu_output_scale_0 = _0_relu_output_zero_point_0 = None | |
dequantize_3 = quantize_per_tensor_3.dequantize(); quantize_per_tensor_3 = None | |
_1_conv1 = getattr(self, "1").conv1(dequantize_3) | |
_1_conv1_output_scale_0 = getattr(self, "1_conv1_output_scale_0") | |
_1_conv1_output_zero_point_0 = getattr(self, "1_conv1_output_zero_point_0") | |
quantize_per_tensor_4 = torch.quantize_per_tensor(_1_conv1, _1_conv1_output_scale_0, _1_conv1_output_zero_point_0, torch.qint8); _1_co | |
nv1 = _1_conv1_output_scale_0 = _1_conv1_output_zero_point_0 = None | |
dequantize_4 = quantize_per_tensor_4.dequantize(); quantize_per_tensor_4 = None | |
_1_conv2 = getattr(self, "1").conv2(dequantize_4); dequantize_4 = None | |
_1_conv2 = getattr(self, "1").conv2(dequantize_4); dequantize_4 = None | |
_1_conv2_output_scale_0 = getattr(self, "1_conv2_output_scale_0") | |
_1_conv2_output_zero_point_0 = getattr(self, "1_conv2_output_zero_point_0") | |
quantize_per_tensor_5 = torch.quantize_per_tensor(_1_conv2, _1_conv2_output_scale_0, _1_conv2_output_zero_point_0, torch.qint8); _1_co | |
nv2 = _1_conv2_output_scale_0 = _1_conv2_output_zero_point_0 = None | |
dequantize_5 = quantize_per_tensor_5.dequantize(); quantize_per_tensor_5 = None | |
add_1 = dequantize_5 + dequantize_3; dequantize_5 = dequantize_3 = None | |
_1_relu_1 = getattr(self, "1").relu(add_1); add_1 = None | |
_1_relu_output_scale_0 = getattr(self, "1_relu_output_scale_0") | |
_1_relu_output_zero_point_0 = getattr(self, "1_relu_output_zero_point_0") | |
quantize_per_tensor_6 = torch.quantize_per_tensor(_1_relu_1, _1_relu_output_scale_0, _1_relu_output_zero_point_0, torch.qint8); _1_rel | |
u_1 = _1_relu_output_scale_0 = _1_relu_output_zero_point_0 = None | |
dequantize_6 = quantize_per_tensor_6.dequantize(); quantize_per_tensor_6 = None | |
return dequantize_6 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment