Created
August 12, 2024 20:07
-
-
Save jerryzh168/58f5afc3e8884be7e3f55025a6187fa2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/ops.py:12: FutureWarning: `torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch. | |
return torch.library.impl_abstract(f"{name}")(func) | |
W0812 13:06:21.489861 139713931614016 torch/_logging/_internal.py:416] Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] torchdynamo start compiling _quantized_linear_op /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:382, stack (elided 6 frames): | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/ao/test/integration/test_integration.py", line 1561, in <module> | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] unittest.main() | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/main.py", line 101, in __init__ | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self.runTests() | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/main.py", line 271, in runTests | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self.result = testRunner.run(self.test) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/runner.py", line 184, in run | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] test(result) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 84, in __call__ | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self.run(*args, **kwds) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 122, in run | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] test(result) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 84, in __call__ | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self.run(*args, **kwds) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 122, in run | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] test(result) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/case.py", line 651, in __call__ | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self.run(*args, **kwds) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/case.py", line 592, in run | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self._callTestMethod(testMethod) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/case.py", line 550, in _callTestMethod | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] method() | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/parameterized/parameterized.py", line 620, in standalone_func | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return func(*(a + p.args), **p.kwargs, **kw) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/ao/test/integration/test_integration.py", line 1499, in test_get_model_size_autoquant | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] mod(example_input) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self._call_impl(*args, **kwargs) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1582, in _call_impl | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc] | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 608, in autoquant_prehook | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] module.finalize_autoquant() | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 620, in finalize_autoquant | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] _change_autoquantizable_to_quantized( | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 494, in _change_autoquantizable_to_quantized | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] _replace_with_custom_fn_if_matches_filter( | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/quant_api.py", line 176, in _replace_with_custom_fn_if_matches_filter | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] new_child = _replace_with_custom_fn_if_matches_filter( | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/quant_api.py", line 172, in _replace_with_custom_fn_if_matches_filter | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] model = replacement_fn(model) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/quant_api.py", line 222, in insert_subclass | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] getattr(cls, from_float)(lin.weight, **kwargs), requires_grad=False | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return func(*args, **kwargs) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 146, in to_quantized | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self.tune_autoquant(q_cls, shapes_and_dtype, time_for_best_shape) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 97, in tune_autoquant | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] res = q_cls._autoquant_test(act_mat, self.weight, bias, best_time, self.mode) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 409, in _autoquant_test | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return super()._autoquant_test(act_mat, *args) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 267, in _autoquant_test | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] res = do_autoquant_bench(q_c_op, act_mat, w_qtensor, bias, warmup=25, rep=100) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return func(*args, **kwargs) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py", line 218, in do_autoquant_bench | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] op(*args, **kwargs) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 433, in _fn | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return fn(*args, **kwargs) | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 1116, in __call__ | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self._torchdynamo_orig_callable( | |
V0812 13:06:21.510456 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] | |
I0812 13:06:21.513082 139713931614016 torch/_dynamo/logging.py:56] [0/0] Step 1: torchdynamo start tracing _quantized_linear_op /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:382 | |
V0812 13:06:21.514011 139713931614016 torch/fx/experimental/symbolic_shapes.py:2529] [0/0] create_env | |
V0812 13:06:21.523315 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:395 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.523315 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] orig_dtype = act_mat.dtype | |
V0812 13:06:21.548435 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST act_mat [] | |
V0812 13:06:21.548632 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR dtype [LazyVariableTracker()] | |
V0812 13:06:21.549578 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_act_mat_ L['act_mat'] | |
V0812 13:06:21.550365 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['act_mat'] (16, 128) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=LocalSource(local_name='act_mat', cell_or_freevar=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> | |
V0812 13:06:21.553598 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE STORE_FAST orig_dtype [ConstantVariable()] | |
V0812 13:06:21.553829 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:396 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.553829 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] orig_shape = act_mat.shape | |
V0812 13:06:21.553982 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST act_mat [] | |
V0812 13:06:21.554080 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR shape [TensorVariable()] | |
V0812 13:06:21.554447 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE STORE_FAST orig_shape [SizeVariable()] | |
V0812 13:06:21.554572 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:397 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.554572 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] act_mat = act_mat.reshape(-1, act_mat.shape[-1], 1) | |
V0812 13:06:21.554683 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST act_mat [] | |
V0812 13:06:21.554781 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR reshape [TensorVariable()] | |
V0812 13:06:21.555121 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST -1 [GetAttrVariable()] | |
V0812 13:06:21.555239 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST act_mat [GetAttrVariable(), ConstantVariable()] | |
V0812 13:06:21.555339 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR shape [GetAttrVariable(), ConstantVariable(), TensorVariable()] | |
V0812 13:06:21.555504 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST -1 [GetAttrVariable(), ConstantVariable(), SizeVariable()] | |
V0812 13:06:21.555595 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BINARY_SUBSCR None [GetAttrVariable(), ConstantVariable(), SizeVariable(), ConstantVariable()] | |
V0812 13:06:21.555802 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST 1 [GetAttrVariable(), ConstantVariable(), ConstantVariable()] | |
V0812 13:06:21.555900 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION 3 [GetAttrVariable(), ConstantVariable(), ConstantVariable(), ConstantVariable()] | |
V0812 13:06:21.558909 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE STORE_FAST act_mat [TensorVariable()] | |
V0812 13:06:21.559157 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.559157 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) | |
V0812 13:06:21.559324 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST act_mat [] | |
V0812 13:06:21.559445 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST w_qtensor [TensorVariable()] | |
V0812 13:06:21.559533 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR layout_tensor [TensorVariable(), LazyVariableTracker()] | |
V0812 13:06:21.559960 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_w_qtensor_ L['w_qtensor'] | |
V0812 13:06:21.560666 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'] (128, 128) SubclassSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=LocalSource(local_name='w_qtensor', cell_or_freevar=False), shape_env_to_source_to_symbol_cache={}, inner_contexts={'layout_tensor': SubclassSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), shape_env_to_source_to_symbol_cache={}, inner_contexts={'int_data': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='int_data'), shape_env_to_source_to_symbol_cache={}), 'scale': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='scale'), shape_env_to_source_to_symbol_cache={}), 'zero_point': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='zero_point'), shape_env_to_source_to_symbol_cache={})})}) <class 'torchao.quantization.autoquant.AQWeightOnlyQuantizedLinearWeight2'> | |
V0812 13:06:21.562460 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor (128, 128) SubclassSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.size()[0]": 128, "L['w_qtensor'].layout_tensor.size()[1]": 128, "L['w_qtensor'].layout_tensor.storage_offset()": 0}}, inner_contexts={'int_data': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='int_data'), shape_env_to_source_to_symbol_cache={}), 'scale': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='scale'), shape_env_to_source_to_symbol_cache={}), 'zero_point': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='zero_point'), shape_env_to_source_to_symbol_cache={})}) <class 'torchao.dtypes.affine_quantized_tensor.PlainAQTLayout'> | |
V0812 13:06:21.564016 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.int_data (128, 128) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='int_data'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.int_data.size()[0]": 128, "L['w_qtensor'].layout_tensor.int_data.size()[1]": 128, "L['w_qtensor'].layout_tensor.int_data.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.564778 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.scale (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='scale'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.scale.size()[0]": 128, "L['w_qtensor'].layout_tensor.scale.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.565435 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.zero_point (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='zero_point'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.zero_point.size()[0]": 128, "L['w_qtensor'].layout_tensor.zero_point.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.566607 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_w_qtensor_layout_tensor L['w_qtensor'].layout_tensor | |
V0812 13:06:21.567148 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor (128, 128) SubclassSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.size()[0]": 128, "L['w_qtensor'].layout_tensor.size()[1]": 128, "L['w_qtensor'].layout_tensor.storage_offset()": 0}}, inner_contexts={'int_data': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='int_data'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.int_data.size()[0]": 128, "L['w_qtensor'].layout_tensor.int_data.size()[1]": 128, "L['w_qtensor'].layout_tensor.int_data.storage_offset()": 0}}), 'scale': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='scale'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.scale.size()[0]": 128, "L['w_qtensor'].layout_tensor.scale.storage_offset()": 0}}), 'zero_point': StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='zero_point'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.zero_point.size()[0]": 128, "L['w_qtensor'].layout_tensor.zero_point.storage_offset()": 0}})}) <class 'torchao.dtypes.affine_quantized_tensor.PlainAQTLayout'> | |
V0812 13:06:21.567540 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.int_data (128, 128) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='int_data'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.int_data.size()[0]": 128, "L['w_qtensor'].layout_tensor.int_data.size()[1]": 128, "L['w_qtensor'].layout_tensor.int_data.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.567753 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.scale (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='scale'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.scale.size()[0]": 128, "L['w_qtensor'].layout_tensor.scale.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.567955 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.zero_point (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='zero_point'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.zero_point.size()[0]": 128, "L['w_qtensor'].layout_tensor.zero_point.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.568401 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_w_qtensor_layout_tensor_int_data L['w_qtensor'].layout_tensor.int_data | |
V0812 13:06:21.568754 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.int_data (128, 128) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='int_data'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.int_data.size()[0]": 128, "L['w_qtensor'].layout_tensor.int_data.size()[1]": 128, "L['w_qtensor'].layout_tensor.int_data.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.569268 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_w_qtensor_layout_tensor_scale L['w_qtensor'].layout_tensor.scale | |
V0812 13:06:21.569647 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.scale (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='scale'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.scale.size()[0]": 128, "L['w_qtensor'].layout_tensor.scale.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.570112 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_w_qtensor_layout_tensor_zero_point L['w_qtensor'].layout_tensor.zero_point | |
V0812 13:06:21.570561 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['w_qtensor'].layout_tensor.zero_point (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=AttrSource(base=AttrSource(base=LocalSource(local_name='w_qtensor', cell_or_freevar=False), member='layout_tensor'), member='zero_point'), shape_env_to_source_to_symbol_cache={139709605740800: {"L['w_qtensor'].layout_tensor.zero_point.size()[0]": 128, "L['w_qtensor'].layout_tensor.zero_point.storage_offset()": 0}}) <class 'torch.Tensor'> | |
V0812 13:06:21.571532 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR int_data [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.571931 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR t [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.572325 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION 0 [TensorVariable(), GetAttrVariable()] | |
V0812 13:06:21.574618 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR unsqueeze [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.574874 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST 0 [TensorVariable(), GetAttrVariable()] | |
V0812 13:06:21.574996 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION 1 [TensorVariable(), GetAttrVariable(), ConstantVariable()] | |
V0812 13:06:21.576864 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BINARY_MULTIPLY None [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.580735 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR sum [TensorVariable()] | |
V0812 13:06:21.581089 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST -2 [GetAttrVariable()] | |
V0812 13:06:21.581210 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST ('dim',) [GetAttrVariable(), ConstantVariable()] | |
V0812 13:06:21.581370 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_KW 1 [GetAttrVariable(), ConstantVariable(), TupleVariable()] | |
V0812 13:06:21.583681 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE STORE_FAST y [TensorVariable()] | |
V0812 13:06:21.583922 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:399 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.583922 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] y = y.reshape(*orig_shape[:-1], y.shape[-1]) * w_qtensor.layout_tensor.scale | |
V0812 13:06:21.584090 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST y [] | |
V0812 13:06:21.584184 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR reshape [TensorVariable()] | |
V0812 13:06:21.584381 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BUILD_LIST 0 [GetAttrVariable()] | |
V0812 13:06:21.584517 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST orig_shape [GetAttrVariable(), ListVariable(length=0)] | |
V0812 13:06:21.584607 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST None [GetAttrVariable(), ListVariable(length=0), SizeVariable()] | |
V0812 13:06:21.584696 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST -1 [GetAttrVariable(), ListVariable(length=0), SizeVariable(), ConstantVariable()] | |
V0812 13:06:21.584788 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BUILD_SLICE 2 [GetAttrVariable(), ListVariable(length=0), SizeVariable(), ConstantVariable(), ConstantVariable()] | |
V0812 13:06:21.584898 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BINARY_SUBSCR None [GetAttrVariable(), ListVariable(length=0), SizeVariable(), SliceVariable()] | |
V0812 13:06:21.585119 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LIST_EXTEND 1 [GetAttrVariable(), ListVariable(length=0), SizeVariable()] | |
V0812 13:06:21.585262 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST y [GetAttrVariable(), ListVariable(length=1)] | |
V0812 13:06:21.585358 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR shape [GetAttrVariable(), ListVariable(length=1), TensorVariable()] | |
V0812 13:06:21.585485 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST -1 [GetAttrVariable(), ListVariable(length=1), SizeVariable()] | |
V0812 13:06:21.585565 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BINARY_SUBSCR None [GetAttrVariable(), ListVariable(length=1), SizeVariable(), ConstantVariable()] | |
V0812 13:06:21.585664 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LIST_APPEND 1 [GetAttrVariable(), ListVariable(length=1), ConstantVariable()] | |
V0812 13:06:21.585748 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LIST_TO_TUPLE None [GetAttrVariable(), ListVariable(length=2)] | |
V0812 13:06:21.585913 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_EX 0 [GetAttrVariable(), TupleVariable()] | |
V0812 13:06:21.587435 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST w_qtensor [TensorVariable()] | |
V0812 13:06:21.587620 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR layout_tensor [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.588115 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR scale [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.588528 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BINARY_MULTIPLY None [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.590674 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE STORE_FAST y [TensorVariable()] | |
V0812 13:06:21.590868 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:400 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.590868 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] if bias is not None: | |
V0812 13:06:21.590996 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST bias [] | |
V0812 13:06:21.591086 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_CONST None [LazyVariableTracker()] | |
V0812 13:06:21.591168 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE IS_OP 1 [LazyVariableTracker(), ConstantVariable()] | |
V0812 13:06:21.591427 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_bias_ L['bias'] | |
V0812 13:06:21.591775 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['bias'] (128,) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>], constraint_sizes=[None], view_base_context=None, tensor_source=LocalSource(local_name='bias', cell_or_freevar=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> | |
V0812 13:06:21.592860 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE POP_JUMP_IF_FALSE 120 [ConstantVariable()] | |
V0812 13:06:21.593034 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:401 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.593034 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] y += bias | |
V0812 13:06:21.593162 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST y [] | |
V0812 13:06:21.593248 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST bias [TensorVariable()] | |
V0812 13:06:21.593345 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE INPLACE_ADD None [TensorVariable(), TensorVariable()] | |
V0812 13:06:21.594603 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE STORE_FAST y [TensorVariable()] | |
V0812 13:06:21.594789 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:402 in _quantized_linear_op (AQWeightOnlyQuantizedLinearWeight2._quantized_linear_op) | |
V0812 13:06:21.594789 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] return y.to(orig_dtype) | |
V0812 13:06:21.594906 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST y [] | |
V0812 13:06:21.594990 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_ATTR to [TensorVariable()] | |
V0812 13:06:21.595152 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST orig_dtype [GetAttrVariable()] | |
V0812 13:06:21.595242 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION 1 [GetAttrVariable(), ConstantVariable()] | |
V0812 13:06:21.595899 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE RETURN_VALUE None [TensorVariable()] | |
I0812 13:06:21.596064 139713931614016 torch/_dynamo/logging.py:56] [0/0] Step 1: torchdynamo done tracing _quantized_linear_op (RETURN_VALUE) | |
V0812 13:06:21.596155 139713931614016 torch/_dynamo/symbolic_convert.py:2626] [0/0] RETURN_VALUE triggered compile | |
V0812 13:06:21.596523 139713931614016 torch/_dynamo/output_graph.py:972] [0/0] COMPILING GRAPH due to GraphCompileReason(reason='return_value', user_stack=[<FrameSummary file /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py, line 402 in _quantized_linear_op>], graph_break=False) | |
V0812 13:06:21.600045 139713931614016 torch/_dynamo/output_graph.py:1542] [0/0] REMOVE UNUSED GRAPHARG L['w_qtensor'] | |
V0812 13:06:21.600266 139713931614016 torch/_dynamo/output_graph.py:1542] [0/0] REMOVE UNUSED GRAPHARG L['w_qtensor'].layout_tensor | |
V0812 13:06:21.600491 139713931614016 torch/_dynamo/output_graph.py:1542] [0/0] REMOVE UNUSED GRAPHARG L['w_qtensor'].layout_tensor.zero_point | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] TRACED GRAPH | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] ===== __compiled_fn_1 ===== | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module): | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] def forward(self, L_act_mat_: "bf16[16, 128][128, 1]cuda:0", L_w_qtensor_layout_tensor_int_data: "i8[128, 128][128, 1]cuda:0", L_w_qtensor_layout_tensor_scale: "bf16[128][1]cuda:0", L_bias_: "bf16[128][1]cuda:0"): | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] l_act_mat_ = L_act_mat_ | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] l_w_qtensor_layout_tensor_int_data = L_w_qtensor_layout_tensor_int_data | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] l_w_qtensor_layout_tensor_scale = L_w_qtensor_layout_tensor_scale | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] l_bias_ = L_bias_ | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] # File: /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:397 in _quantized_linear_op, code: act_mat = act_mat.reshape(-1, act_mat.shape[-1], 1) | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] act_mat: "bf16[16, 128, 1][128, 1, 1]cuda:0" = l_act_mat_.reshape(-1, 128, 1); l_act_mat_ = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] # File: /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op, code: y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] t: "i8[128, 128][1, 128]cuda:0" = l_w_qtensor_layout_tensor_int_data.t(); l_w_qtensor_layout_tensor_int_data = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] unsqueeze: "i8[1, 128, 128][128, 1, 128]cuda:0" = t.unsqueeze(0); t = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] mul: "bf16[16, 128, 128][16384, 1, 128]cuda:0" = act_mat * unsqueeze; act_mat = unsqueeze = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] y: "bf16[16, 128][128, 1]cuda:0" = mul.sum(dim = -2); mul = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] # File: /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:399 in _quantized_linear_op, code: y = y.reshape(*orig_shape[:-1], y.shape[-1]) * w_qtensor.layout_tensor.scale | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] reshape_1: "bf16[16, 128][128, 1]cuda:0" = y.reshape(16, 128); y = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] y_1: "bf16[16, 128][128, 1]cuda:0" = reshape_1 * l_w_qtensor_layout_tensor_scale; reshape_1 = l_w_qtensor_layout_tensor_scale = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] # File: /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:401 in _quantized_linear_op, code: y += bias | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] y_1 += l_bias_; y_2: "bf16[16, 128][128, 1]cuda:0" = y_1; y_1 = l_bias_ = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] # File: /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:402 in _quantized_linear_op, code: return y.to(orig_dtype) | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] to: "bf16[16, 128][128, 1]cuda:0" = y_2.to(torch.bfloat16); y_2 = None | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] return (to,) | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
V0812 13:06:21.600896 139713931614016 torch/_dynamo/output_graph.py:1291] [0/0] [__graph_code] | |
I0812 13:06:21.603430 139713931614016 torch/_dynamo/logging.py:56] [0/0] Step 2: calling compiler function inductor | |
V0812 13:06:22.300398 139713931614016 torch/fx/experimental/symbolic_shapes.py:5167] [0/0] eval True == True [statically known] | |
I0812 13:06:24.894164 139713931614016 torch/_dynamo/logging.py:56] [0/0] Step 2: done compiler function inductor | |
I0812 13:06:24.902543 139713931614016 torch/fx/experimental/symbolic_shapes.py:3639] [0/0] produce_guards | |
V0812 13:06:24.902872 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['act_mat'].size()[0] 16 None | |
V0812 13:06:24.903014 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['act_mat'].size()[1] 128 None | |
V0812 13:06:24.903107 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['act_mat'].stride()[0] 128 None | |
V0812 13:06:24.903193 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['act_mat'].stride()[1] 1 None | |
V0812 13:06:24.903273 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['act_mat'].storage_offset() 0 None | |
V0812 13:06:24.903444 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[0] 128 None | |
V0812 13:06:24.903531 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[1] 128 None | |
V0812 13:06:24.903610 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[0] 128 None | |
V0812 13:06:24.903685 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[1] 1 None | |
V0812 13:06:24.903760 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.storage_offset() 0 None | |
V0812 13:06:24.903860 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.size()[0] 128 None | |
V0812 13:06:24.903939 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.stride()[0] 1 None | |
V0812 13:06:24.904014 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.storage_offset() 0 None | |
V0812 13:06:24.904096 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.size()[0] 128 None | |
V0812 13:06:24.904173 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.stride()[0] 1 None | |
V0812 13:06:24.904257 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.storage_offset() 0 None | |
V0812 13:06:24.904401 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.size()[0] 128 None | |
V0812 13:06:24.904479 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.size()[1] 128 None | |
V0812 13:06:24.904552 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.stride()[0] 128 None | |
V0812 13:06:24.904621 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.stride()[1] 1 None | |
V0812 13:06:24.904712 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.storage_offset() 0 None | |
V0812 13:06:24.904806 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[0] 128 None | |
V0812 13:06:24.904879 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[1] 128 None | |
V0812 13:06:24.904949 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[0] 128 None | |
V0812 13:06:24.905018 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[1] 1 None | |
V0812 13:06:24.905089 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.storage_offset() 0 None | |
V0812 13:06:24.905165 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.size()[0] 128 None | |
V0812 13:06:24.905237 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.stride()[0] 1 None | |
V0812 13:06:24.905322 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.storage_offset() 0 None | |
V0812 13:06:24.905399 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.size()[0] 128 None | |
V0812 13:06:24.905472 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.stride()[0] 1 None | |
V0812 13:06:24.905544 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.storage_offset() 0 None | |
V0812 13:06:24.905685 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].size()[0] 128 None | |
V0812 13:06:24.905778 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].size()[1] 128 None | |
V0812 13:06:24.905867 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].stride()[0] 128 None | |
V0812 13:06:24.905983 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].stride()[1] 1 None | |
V0812 13:06:24.906062 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].storage_offset() 0 None | |
V0812 13:06:24.906140 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.size()[0] 128 None | |
V0812 13:06:24.906217 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.size()[1] 128 None | |
V0812 13:06:24.906288 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.stride()[0] 128 None | |
V0812 13:06:24.906423 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.stride()[1] 1 None | |
V0812 13:06:24.906502 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.storage_offset() 0 None | |
V0812 13:06:24.906586 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[0] 128 None | |
V0812 13:06:24.906666 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[1] 128 None | |
V0812 13:06:24.906742 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[0] 128 None | |
V0812 13:06:24.906829 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[1] 1 None | |
V0812 13:06:24.906904 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.storage_offset() 0 None | |
V0812 13:06:24.907004 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.size()[0] 128 None | |
V0812 13:06:24.907085 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.stride()[0] 1 None | |
V0812 13:06:24.907161 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.storage_offset() 0 None | |
V0812 13:06:24.907249 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.size()[0] 128 None | |
V0812 13:06:24.907342 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.stride()[0] 1 None | |
V0812 13:06:24.907424 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.storage_offset() 0 None | |
V0812 13:06:24.907544 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.size()[0] 128 None | |
V0812 13:06:24.907641 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.size()[1] 128 None | |
V0812 13:06:24.907717 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.stride()[0] 128 None | |
V0812 13:06:24.907805 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.stride()[1] 1 None | |
V0812 13:06:24.907881 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.storage_offset() 0 None | |
V0812 13:06:24.907959 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[0] 128 None | |
V0812 13:06:24.908039 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[1] 128 None | |
V0812 13:06:24.908113 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[0] 128 None | |
V0812 13:06:24.908188 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[1] 1 None | |
V0812 13:06:24.908263 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.storage_offset() 0 None | |
V0812 13:06:24.908358 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.size()[0] 128 None | |
V0812 13:06:24.908439 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.stride()[0] 1 None | |
V0812 13:06:24.908514 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.storage_offset() 0 None | |
V0812 13:06:24.908592 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.size()[0] 128 None | |
V0812 13:06:24.908672 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.stride()[0] 1 None | |
V0812 13:06:24.908787 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.storage_offset() 0 None | |
V0812 13:06:24.908871 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[0] 128 None | |
V0812 13:06:24.908942 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.size()[1] 128 None | |
V0812 13:06:24.909019 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[0] 128 None | |
V0812 13:06:24.909101 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.stride()[1] 1 None | |
V0812 13:06:24.909176 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.int_data.storage_offset() 0 None | |
V0812 13:06:24.909262 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.size()[0] 128 None | |
V0812 13:06:24.909352 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.stride()[0] 1 None | |
V0812 13:06:24.909430 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.scale.storage_offset() 0 None | |
V0812 13:06:24.909512 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.size()[0] 128 None | |
V0812 13:06:24.909585 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.stride()[0] 1 None | |
V0812 13:06:24.909663 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['w_qtensor'].layout_tensor.zero_point.storage_offset() 0 None | |
V0812 13:06:24.909770 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['bias'].size()[0] 128 None | |
V0812 13:06:24.909853 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['bias'].stride()[0] 1 None | |
V0812 13:06:24.909928 139713931614016 torch/fx/experimental/symbolic_shapes.py:3821] [0/0] track_symint L['bias'].storage_offset() 0 None | |
V0812 13:06:24.910512 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['act_mat'].size()[0] == 16 | |
V0812 13:06:24.910695 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['act_mat'].size()[1] == 128 | |
V0812 13:06:24.910823 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['act_mat'].stride()[0] == 128 | |
V0812 13:06:24.910938 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['act_mat'].stride()[1] == 1 | |
V0812 13:06:24.911082 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['act_mat'].storage_offset() == 0 | |
V0812 13:06:24.911196 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[0] == 128 | |
V0812 13:06:24.911290 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[1] == 128 | |
V0812 13:06:24.911419 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[0] == 128 | |
V0812 13:06:24.911529 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[1] == 1 | |
V0812 13:06:24.911623 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.storage_offset() == 0 | |
V0812 13:06:24.911715 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.size()[0] == 128 | |
V0812 13:06:24.911822 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.stride()[0] == 1 | |
V0812 13:06:24.911917 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.storage_offset() == 0 | |
V0812 13:06:24.912008 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.size()[0] == 128 | |
V0812 13:06:24.912136 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.stride()[0] == 1 | |
V0812 13:06:24.912228 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.storage_offset() == 0 | |
V0812 13:06:24.912379 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.size()[0] == 128 | |
V0812 13:06:24.912489 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.size()[1] == 128 | |
V0812 13:06:24.912583 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.stride()[0] == 128 | |
V0812 13:06:24.912677 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.stride()[1] == 1 | |
V0812 13:06:24.912783 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.storage_offset() == 0 | |
V0812 13:06:24.912880 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[0] == 128 | |
V0812 13:06:24.912974 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[1] == 128 | |
V0812 13:06:24.913065 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[0] == 128 | |
V0812 13:06:24.913159 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[1] == 1 | |
V0812 13:06:24.913254 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.storage_offset() == 0 | |
V0812 13:06:24.913363 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.size()[0] == 128 | |
V0812 13:06:24.913459 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.stride()[0] == 1 | |
V0812 13:06:24.913554 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.storage_offset() == 0 | |
V0812 13:06:24.913671 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.size()[0] == 128 | |
V0812 13:06:24.913786 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.stride()[0] == 1 | |
V0812 13:06:24.913884 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.storage_offset() == 0 | |
V0812 13:06:24.913977 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].size()[0] == 128 | |
V0812 13:06:24.914068 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].size()[1] == 128 | |
V0812 13:06:24.914182 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].stride()[0] == 128 | |
V0812 13:06:24.914285 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].stride()[1] == 1 | |
V0812 13:06:24.914388 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].storage_offset() == 0 | |
V0812 13:06:24.914479 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.size()[0] == 128 | |
V0812 13:06:24.914567 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.size()[1] == 128 | |
V0812 13:06:24.914656 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.stride()[0] == 128 | |
V0812 13:06:24.914744 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.stride()[1] == 1 | |
V0812 13:06:24.914846 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.storage_offset() == 0 | |
V0812 13:06:24.914948 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[0] == 128 | |
V0812 13:06:24.915060 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[1] == 128 | |
V0812 13:06:24.915152 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[0] == 128 | |
V0812 13:06:24.915246 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[1] == 1 | |
V0812 13:06:24.915356 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.storage_offset() == 0 | |
V0812 13:06:24.915453 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.size()[0] == 128 | |
V0812 13:06:24.915555 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.stride()[0] == 1 | |
V0812 13:06:24.915645 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.storage_offset() == 0 | |
V0812 13:06:24.915755 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.size()[0] == 128 | |
V0812 13:06:24.915893 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.stride()[0] == 1 | |
V0812 13:06:24.915993 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.storage_offset() == 0 | |
V0812 13:06:24.916106 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.size()[0] == 128 | |
V0812 13:06:24.916213 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.size()[1] == 128 | |
V0812 13:06:24.916322 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.stride()[0] == 128 | |
V0812 13:06:24.916421 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.stride()[1] == 1 | |
V0812 13:06:24.916518 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.storage_offset() == 0 | |
V0812 13:06:24.916615 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[0] == 128 | |
V0812 13:06:24.916711 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[1] == 128 | |
V0812 13:06:24.916819 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[0] == 128 | |
V0812 13:06:24.916917 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[1] == 1 | |
V0812 13:06:24.917015 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.storage_offset() == 0 | |
V0812 13:06:24.917111 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.size()[0] == 128 | |
V0812 13:06:24.917207 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.stride()[0] == 1 | |
V0812 13:06:24.917373 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.storage_offset() == 0 | |
V0812 13:06:24.917548 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.size()[0] == 128 | |
V0812 13:06:24.917675 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.stride()[0] == 1 | |
V0812 13:06:24.917803 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.storage_offset() == 0 | |
V0812 13:06:24.917906 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[0] == 128 | |
V0812 13:06:24.918000 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.size()[1] == 128 | |
V0812 13:06:24.918092 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[0] == 128 | |
V0812 13:06:24.918186 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.stride()[1] == 1 | |
V0812 13:06:24.918281 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.int_data.storage_offset() == 0 | |
V0812 13:06:24.918415 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.size()[0] == 128 | |
V0812 13:06:24.918514 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.stride()[0] == 1 | |
V0812 13:06:24.918612 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.scale.storage_offset() == 0 | |
V0812 13:06:24.918709 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.size()[0] == 128 | |
V0812 13:06:24.918826 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.stride()[0] == 1 | |
V0812 13:06:24.918987 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['w_qtensor'].layout_tensor.zero_point.storage_offset() == 0 | |
V0812 13:06:24.919149 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['bias'].size()[0] == 128 | |
V0812 13:06:24.919291 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['bias'].stride()[0] == 1 | |
V0812 13:06:24.919413 139713931614016 torch/fx/experimental/symbolic_shapes.py:3985] [0/0] Skipping guard L['bias'].storage_offset() == 0 | |
V0812 13:06:24.920094 139713931614016 torch/_dynamo/guards.py:2169] [0/0] [__guards] GUARDS: | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] TREE_GUARD_MANAGER: | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] +- RootGuardManager | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | +- DEFAULT_DEVICE: utils_device.CURRENT_DEVICE == None # _dynamo/output_graph.py:460 in init_ambient_guards | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | +- GLOBAL_STATE: ___check_global_state() | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | +- GuardManager: source=L['bias'], accessed_by=DictGetItemGuardAccessor(bias) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- TENSOR_MATCH: check_tensor(L['bias'], Tensor, DispatchKeySet(CUDA, BackendSelect, ADInplaceOrView, AutogradCUDA), torch.bfloat16, device=0, requires_grad=False, size=[128], stride=[1]) # if bias is not None: # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:400 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- NO_HASATTR: hasattr(L['bias'], '_dynamo_dynamic_indices') == False # if bias is not None: # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:400 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | +- GuardManager: source=L['act_mat'], accessed_by=DictGetItemGuardAccessor(act_mat) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- TENSOR_MATCH: check_tensor(L['act_mat'], Tensor, DispatchKeySet(CUDA, BackendSelect, ADInplaceOrView, AutogradCUDA), torch.bfloat16, device=0, requires_grad=False, size=[16, 128], stride=[128, 1]) # orig_dtype = act_mat.dtype # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:395 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- NO_HASATTR: hasattr(L['act_mat'], '_dynamo_dynamic_indices') == False # orig_dtype = act_mat.dtype # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:395 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | +- GuardManager: source=L['w_qtensor'], accessed_by=DictGetItemGuardAccessor(w_qtensor) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- TYPE_MATCH: ___check_type_id(L['w_qtensor'], 94686462456592) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- TENSOR_MATCH: check_tensor(L['w_qtensor'], AQWeightOnlyQuantizedLinearWeight2, DispatchKeySet(CUDA, BackendSelect, Python, ADInplaceOrView, AutogradCUDA, PythonTLSSnapshot), torch.bfloat16, device=0, requires_grad=False, size=[128, 128], stride=[128, 1]) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- NO_HASATTR: hasattr(L['w_qtensor'], '_dynamo_dynamic_indices') == False # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | +- GuardManager: source=L['w_qtensor'].layout_tensor, accessed_by=GetAttrGuardAccessor(layout_tensor) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- TYPE_MATCH: ___check_type_id(L['w_qtensor'].layout_tensor, 94686461740416) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- TENSOR_MATCH: check_tensor(L['w_qtensor'].layout_tensor, PlainAQTLayout, DispatchKeySet(CUDA, BackendSelect, Python, ADInplaceOrView, AutogradCUDA, PythonTLSSnapshot), torch.int8, device=0, requires_grad=False, size=[128, 128], stride=[128, 1]) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- NO_HASATTR: hasattr(L['w_qtensor'].layout_tensor, '_dynamo_dynamic_indices') == False # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- GuardManager: source=L['w_qtensor'].layout_tensor.scale, accessed_by=GetAttrGuardAccessor(scale) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- TENSOR_MATCH: check_tensor(L['w_qtensor'].layout_tensor.scale, Tensor, DispatchKeySet(CUDA, BackendSelect, ADInplaceOrView, AutogradCUDA), torch.bfloat16, device=0, requires_grad=False, size=[128], stride=[1]) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- NO_HASATTR: hasattr(L['w_qtensor'].layout_tensor.scale, '_dynamo_dynamic_indices') == False # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- GuardManager: source=L['w_qtensor'].layout_tensor.int_data, accessed_by=GetAttrGuardAccessor(int_data) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- TENSOR_MATCH: check_tensor(L['w_qtensor'].layout_tensor.int_data, Tensor, DispatchKeySet(CUDA, BackendSelect, ADInplaceOrView, AutogradCUDA), torch.int8, device=0, requires_grad=False, size=[128, 128], stride=[128, 1]) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- NO_HASATTR: hasattr(L['w_qtensor'].layout_tensor.int_data, '_dynamo_dynamic_indices') == False # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | +- GuardManager: source=L['w_qtensor'].layout_tensor.zero_point, accessed_by=GetAttrGuardAccessor(zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- TENSOR_MATCH: check_tensor(L['w_qtensor'].layout_tensor.zero_point, Tensor, DispatchKeySet(CUDA, BackendSelect, ADInplaceOrView, AutogradCUDA), torch.int64, device=0, requires_grad=False, size=[128], stride=[1]) # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- NO_HASATTR: hasattr(L['w_qtensor'].layout_tensor.zero_point, '_dynamo_dynamic_indices') == False # y = (act_mat*w_qtensor.layout_tensor.int_data.t().unsqueeze(0)).sum(dim=-2) # torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/quantization/autoquant.py:398 in _quantized_linear_op | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | | | | +- NO_TENSOR_ALIASING: check_no_aliasing(L['bias'], L['act_mat'], L['w_qtensor'], L['w_qtensor'].layout_tensor, L['w_qtensor'].layout_tensor.scale, L['w_qtensor'].layout_tensor.int_data, L['w_qtensor'].layout_tensor.zero_point) | |
V0812 13:06:24.920347 139713931614016 torch/_dynamo/guards.py:2148] [0/0] [__guards] | |
V0812 13:06:24.923117 139713931614016 torch/_dynamo/convert_frame.py:1082] skipping: _fn (reason: in skipfiles, file: /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py) | |
W0812 13:06:26.775476 139713931614016 torch/_logging/_internal.py:416] Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] torchdynamo start compiling inner /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/external_utils.py:36, stack (elided 6 frames): | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/ao/test/integration/test_integration.py", line 1561, in <module> | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] unittest.main() | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/main.py", line 101, in __init__ | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self.runTests() | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/main.py", line 271, in runTests | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self.result = testRunner.run(self.test) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/runner.py", line 184, in run | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] test(result) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 84, in __call__ | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self.run(*args, **kwds) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 122, in run | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] test(result) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 84, in __call__ | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self.run(*args, **kwds) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/suite.py", line 122, in run | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] test(result) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/case.py", line 651, in __call__ | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self.run(*args, **kwds) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/case.py", line 592, in run | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] self._callTestMethod(testMethod) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/unittest/case.py", line 550, in _callTestMethod | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] method() | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/parameterized/parameterized.py", line 620, in standalone_func | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return func(*(a + p.args), **p.kwargs, **kw) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/ao/test/integration/test_integration.py", line 1499, in test_get_model_size_autoquant | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] mod(example_input) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self._call_impl(*args, **kwargs) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1603, in _call_impl | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] result = forward_call(*args, **kwargs) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 433, in _fn | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return fn(*args, **kwargs) | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 1116, in __call__ | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] return self._torchdynamo_orig_callable( | |
V0812 13:06:26.776892 139713931614016 torch/_dynamo/convert_frame.py:776] [0/0] | |
I0812 13:06:26.777700 139713931614016 torch/_dynamo/logging.py:56] [0/0] Step 1: torchdynamo start tracing inner /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/external_utils.py:36 | |
V0812 13:06:26.778169 139713931614016 torch/fx/experimental/symbolic_shapes.py:2529] [0/0] create_env | |
V0812 13:06:26.779340 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] TRACE starts_line /home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/external_utils.py:38 in inner (wrap_inline.inner) | |
V0812 13:06:26.779340 139713931614016 torch/_dynamo/symbolic_convert.py:775] [0/0] [__trace_source] return fn(*args, **kwargs) | |
V0812 13:06:26.782714 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_DEREF fn [] | |
V0812 13:06:26.782876 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST args [LazyVariableTracker()] | |
V0812 13:06:26.783027 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE BUILD_MAP 0 [LazyVariableTracker(), LazyVariableTracker()] | |
V0812 13:06:26.783227 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE LOAD_FAST kwargs [LazyVariableTracker(), LazyVariableTracker(), ConstDictVariable()] | |
V0812 13:06:26.783357 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE DICT_MERGE 1 [LazyVariableTracker(), LazyVariableTracker(), ConstDictVariable(), LazyVariableTracker()] | |
V0812 13:06:26.783895 139713931614016 torch/_dynamo/symbolic_convert.py:798] [0/0] [__trace_bytecode] TRACE CALL_FUNCTION_EX 1 [LazyVariableTracker(), LazyVariableTracker(), ConstDictVariable()] | |
V0812 13:06:26.785496 139713931614016 torch/_dynamo/output_graph.py:2033] [0/0] create_graph_input L_args_0_ L['args'][0] | |
V0812 13:06:26.786081 139713931614016 torch/_dynamo/variables/builder.py:2268] [0/0] wrap_to_fake L['args'][0] (16, 128) StatefulSymbolicContext(dynamic_sizes=[<DimDynamic.STATIC: 2>, <DimDynamic.STATIC: 2>], constraint_sizes=[None, None], view_base_context=None, tensor_source=GetItemSource(base=LocalSource(local_name='args', cell_or_freevar=False), index=0, index_is_slice=False), shape_env_to_source_to_symbol_cache={}) <class 'torch.Tensor'> | |
E | |
====================================================================== | |
ERROR: test_get_model_size_autoquant_5_cuda (__main__.TestUtils) | |
---------------------------------------------------------------------- | |
Traceback (most recent call last): | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/parameterized/parameterized.py", line 620, in standalone_func | |
return func(*(a + p.args), **p.kwargs, **kw) | |
File "/home/jerryzh/ao/test/integration/test_integration.py", line 1499, in test_get_model_size_autoquant | |
mod(example_input) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl | |
return self._call_impl(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1603, in _call_impl | |
result = forward_call(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 433, in _fn | |
return fn(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 1116, in __call__ | |
return self._torchdynamo_orig_callable( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 948, in __call__ | |
result = self._inner_convert( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 472, in __call__ | |
return _compile( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_utils_internal.py", line 84, in wrapper_function | |
return StrobelightCompileTimeProfiler.profile_compile_time( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_strobelight/compile_time_profiler.py", line 129, in profile_compile_time | |
return func(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/contextlib.py", line 79, in inner | |
return func(*args, **kwds) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 817, in _compile | |
guarded_code = compile_inner(code, one_graph, hooks, transform) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 231, in time_wrapper | |
r = func(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 636, in compile_inner | |
out_code = transform_code_object(code, transform) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/bytecode_transformation.py", line 1185, in transform_code_object | |
transformations(instructions, code_options) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 178, in _fn | |
return fn(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 582, in transform | |
tracer.run() | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2451, in run | |
super().run() | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 893, in run | |
while self.step(): | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 805, in step | |
self.dispatch_table[inst.opcode](self, inst) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 499, in wrapper | |
return inner_fn(self, inst) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 1500, in CALL_FUNCTION_EX | |
self.call_function(fn, argsvars.items, kwargsvars) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 743, in call_function | |
self.push(fn.call_function(self, args, kwargs)) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/variables/lazy.py", line 132, in realize_and_forward | |
return getattr(self.realize(), name)(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/variables/nn_module.py", line 366, in call_function | |
tx.call_function( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 743, in call_function | |
self.push(fn.call_function(self, args, kwargs)) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/variables/nn_module.py", line 409, in call_function | |
return wrap_fx_proxy( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py", line 1713, in wrap_fx_proxy | |
return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/variables/builder.py", line 1798, in wrap_fx_proxy_cls | |
example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 1853, in get_fake_value | |
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 1785, in get_fake_value | |
ret_val = wrap_fake_exception( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 1300, in wrap_fake_exception | |
return fn() | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 1786, in <lambda> | |
lambda: run_node(tx.output, node, args, kwargs, nnmodule) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 1921, in run_node | |
raise RuntimeError(make_error_message(e)).with_traceback( | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 1908, in run_node | |
return nnmodule(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl | |
return self._call_impl(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl | |
return forward_call(*args, **kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/nn/modules/linear.py", line 117, in forward | |
return F.linear(input, self.weight, self.bias) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/dtypes/utils.py", line 54, in _dispatch__torch_function__ | |
return cls._ATEN_OP_OR_TORCH_FN_TABLE[func](func, types, args, kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/dtypes/utils.py", line 37, in wrapper | |
return func(f, types, args, kwargs) | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/dtypes/affine_quantized_tensor.py", line 844, in _ | |
weight_tensor = weight_tensor.dequantize() | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torchao-0.4.0+gitd3b8d43-py3.9-linux-x86_64.egg/torchao/dtypes/affine_quantized_tensor.py", line 155, in dequantize | |
int_data, scale, zero_point = self.layout_tensor.get_plain() | |
torch._dynamo.exc.TorchRuntimeError: Failed running call_module fn_1(*(FakeTensor(..., device='cuda:0', size=(16, 128), dtype=torch.bfloat16),), **{}): | |
'FakeTensor' object has no attribute 'get_plain' | |
from user code: | |
File "/home/jerryzh/anaconda3/envs/ao_new/lib/python3.9/site-packages/torch/_dynamo/external_utils.py", line 38, in inner | |
return fn(*args, **kwargs) | |
Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information | |
You can suppress this exception and fall back to eager by setting: | |
import torch._dynamo | |
torch._dynamo.config.suppress_errors = True | |
---------------------------------------------------------------------- | |
Ran 1 test in 11.173s | |
FAILED (errors=1) | |
I0812 13:06:26.802663 139713931614016 torch/_dynamo/utils.py:335] TorchDynamo compilation metrics: | |
I0812 13:06:26.802663 139713931614016 torch/_dynamo/utils.py:335] Function Runtimes (s) | |
I0812 13:06:26.802663 139713931614016 torch/_dynamo/utils.py:335] ------------------------------- -------------- | |
I0812 13:06:26.802663 139713931614016 torch/_dynamo/utils.py:335] _compile.<locals>.compile_inner 0 | |
V0812 13:06:26.802917 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats constrain_symbol_range: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:26.803025 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats evaluate_expr: CacheInfo(hits=14, misses=1, maxsize=256, currsize=1) | |
V0812 13:06:26.803108 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _simplify_floor_div: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:26.803186 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _maybe_guard_rel: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:26.803320 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _find: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:26.803404 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats has_hint: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:26.803472 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats size_hint: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:26.803539 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats simplify: CacheInfo(hits=0, misses=1, maxsize=None, currsize=1) | |
V0812 13:06:26.803606 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _update_divisible: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:26.803671 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats replace: CacheInfo(hits=0, misses=1, maxsize=None, currsize=1) | |
V0812 13:06:26.803736 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _maybe_evaluate_static: CacheInfo(hits=0, misses=1, maxsize=None, currsize=1) | |
V0812 13:06:26.803818 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats get_implications: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:26.803886 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats get_axioms: CacheInfo(hits=3, misses=2, maxsize=None, currsize=2) | |
V0812 13:06:26.803952 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats safe_expand: CacheInfo(hits=1, misses=1, maxsize=256, currsize=1) | |
V0812 13:06:26.804018 139713931614016 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats uninteresting_files: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
I0812 13:06:29.281517 140027842737984 torch/_dynamo/utils.py:335] TorchDynamo compilation metrics: | |
I0812 13:06:29.281517 140027842737984 torch/_dynamo/utils.py:335] Function Runtimes (s) | |
I0812 13:06:29.281517 140027842737984 torch/_dynamo/utils.py:335] ---------- -------------- | |
V0812 13:06:29.281978 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats constrain_symbol_range: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282101 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats evaluate_expr: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:29.282184 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _simplify_floor_div: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282260 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _maybe_guard_rel: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:29.282350 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _find: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282423 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats has_hint: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:29.282493 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats size_hint: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:29.282562 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats simplify: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282630 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _update_divisible: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282696 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats replace: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282790 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats _maybe_evaluate_static: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282869 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats get_implications: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.282940 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats get_axioms: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) | |
V0812 13:06:29.283012 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats safe_expand: CacheInfo(hits=0, misses=0, maxsize=256, currsize=0) | |
V0812 13:06:29.283083 140027842737984 torch/fx/experimental/symbolic_shapes.py:116] lru_cache_stats uninteresting_files: CacheInfo(hits=0, misses=0, maxsize=None, currsize=0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment