Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save jerryzh168/7d307883af619cfdba9253ead3c32e40 to your computer and use it in GitHub Desktop.
Save jerryzh168/7d307883af619cfdba9253ead3c32e40 to your computer and use it in GitHub Desktop.
quantized: GraphModule(
(conv1): ConvReLU2d(
(0): Conv2d(
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3)
(weight_post_process): MinMaxObserver(min_val=-0.10300777107477188, max_val=0.09756611287593842)
)
(1): ReLU(inplace=True)
)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Module(
(0): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.2381705939769745, max_val=0.22953075170516968)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.2629091143608093, max_val=0.2224341630935669)
)
(relu): ReLU(inplace=True)
)
(1): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.22412416338920593, max_val=0.26422253251075745)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.24510380625724792, max_val=0.2615947425365448)
)
(relu): ReLU(inplace=True)
)
)
(layer2): Module(
(0): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.17348946630954742, max_val=0.16777494549751282)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.19203202426433563, max_val=0.1656666100025177)
)
(downsample): Module(
(0): Conv2d(
64, 128, kernel_size=(1, 1), stride=(2, 2)
(weight_post_process): MinMaxObserver(min_val=-0.4908600151538849, max_val=0.4047921299934387)
)
)
(relu): ReLU(inplace=True)
)
(1): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.20759394764900208, max_val=0.1722526252269745)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.18452289700508118, max_val=0.18638639152050018)
)
(relu): ReLU(inplace=True)
)
)
(layer3): Module(
(0): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.14486479759216309, max_val=0.13767831027507782)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.14476695656776428, max_val=0.14766506850719452)
)
(downsample): Module(
(0): Conv2d(
128, 256, kernel_size=(1, 1), stride=(2, 2)
(weight_post_process): MinMaxObserver(min_val=-0.35111692547798157, max_val=0.3324059844017029)
)
)
(relu): ReLU(inplace=True)
)
(1): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.13645324110984802, max_val=0.13354922831058502)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.14423039555549622, max_val=0.14707262814044952)
)
(relu): ReLU(inplace=True)
)
)
(layer4): Module(
(0): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.10493732243776321, max_val=0.10505590587854385)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.10875571519136429, max_val=0.10566854476928711)
)
(downsample): Module(
(0): Conv2d(
256, 512, kernel_size=(1, 1), stride=(2, 2)
(weight_post_process): MinMaxObserver(min_val=-0.28852152824401855, max_val=0.2584802806377411)
)
)
(relu): ReLU(inplace=True)
)
(1): Module(
(conv1): ConvReLU2d(
(0): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.10482379794120789, max_val=0.11298386752605438)
)
(1): ReLU(inplace=True)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(weight_post_process): MinMaxObserver(min_val=-0.11105507612228394, max_val=0.10828526318073273)
)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(
in_features=512, out_features=1000, bias=True
(weight_post_process): MinMaxObserver(min_val=-0.044193997979164124, max_val=0.04419409856200218)
)
)
def forward(self, x : torch.Tensor):
conv1_input_scale_0 = self.conv1_input_scale_0
conv1_input_zero_point_0 = self.conv1_input_zero_point_0
quantize_per_tensor = torch.quantize_per_tensor(x, conv1_input_scale_0, conv1_input_zero_point_0, torch.qint8); x = conv1_input_scale_0 = conv1_input_zero_point_0 = None
dequantize = quantize_per_tensor.dequantize(); quantize_per_tensor = None
conv1 = self.conv1(dequantize); dequantize = None
conv1_output_scale_0 = self.conv1_output_scale_0
conv1_output_zero_point_0 = self.conv1_output_zero_point_0
quantize_per_tensor_1 = torch.quantize_per_tensor(conv1, conv1_output_scale_0, conv1_output_zero_point_0, torch.qint8); conv1 = conv1_output_scale_0 = conv1_output_zero_point_0 = None
dequantize_1 = quantize_per_tensor_1.dequantize(); quantize_per_tensor_1 = None
maxpool = self.maxpool(dequantize_1); dequantize_1 = None
maxpool_output_scale_0 = self.maxpool_output_scale_0
maxpool_output_zero_point_0 = self.maxpool_output_zero_point_0
quantize_per_tensor_2 = torch.quantize_per_tensor(maxpool, maxpool_output_scale_0, maxpool_output_zero_point_0, torch.qint8); maxpool = maxpool_output_scale_0 = maxpool_output_zero_point_0 = None
dequantize_2 = quantize_per_tensor_2.dequantize(); quantize_per_tensor_2 = None
layer1_0_conv1 = getattr(self.layer1, "0").conv1(dequantize_2)
layer1_0_conv1_output_scale_0 = self.layer1_0_conv1_output_scale_0
layer1_0_conv1_output_zero_point_0 = self.layer1_0_conv1_output_zero_point_0
quantize_per_tensor_3 = torch.quantize_per_tensor(layer1_0_conv1, layer1_0_conv1_output_scale_0, layer1_0_conv1_output_zero_point_0, torch.qint8); layer1_0_conv1 = layer1_0_conv1_output_scale_0 = layer1_0_conv1_output_zero_point_0 = None
dequantize_3 = quantize_per_tensor_3.dequantize(); quantize_per_tensor_3 = None
layer1_0_conv2 = getattr(self.layer1, "0").conv2(dequantize_3); dequantize_3 = None
layer1_0_conv2_output_scale_0 = self.layer1_0_conv2_output_scale_0
layer1_0_conv2_output_zero_point_0 = self.layer1_0_conv2_output_zero_point_0
quantize_per_tensor_4 = torch.quantize_per_tensor(layer1_0_conv2, layer1_0_conv2_output_scale_0, layer1_0_conv2_output_zero_point_0, torch.qint8); layer1_0_conv2 = layer1_0_conv2_output_scale_0 = layer1_0_conv2_output_zero_point_0 = None
dequantize_4 = quantize_per_tensor_4.dequantize(); quantize_per_tensor_4 = None
add = dequantize_4 + dequantize_2; dequantize_4 = dequantize_2 = None
layer1_0_relu_input_scale_0 = self.layer1_0_relu_input_scale_0
layer1_0_relu_input_zero_point_0 = self.layer1_0_relu_input_zero_point_0
quantize_per_tensor_5 = torch.quantize_per_tensor(add, layer1_0_relu_input_scale_0, layer1_0_relu_input_zero_point_0, torch.qint8); add = layer1_0_relu_input_scale_0 = layer1_0_relu_input_zero_point_0 = None
dequantize_5 = quantize_per_tensor_5.dequantize(); quantize_per_tensor_5 = None
layer1_0_relu_1 = getattr(self.layer1, "0").relu(dequantize_5); dequantize_5 = None
layer1_0_relu_output_scale_0 = self.layer1_0_relu_output_scale_0
layer1_0_relu_output_zero_point_0 = self.layer1_0_relu_output_zero_point_0
quantize_per_tensor_6 = torch.quantize_per_tensor(layer1_0_relu_1, layer1_0_relu_output_scale_0, layer1_0_relu_output_zero_point_0, torch.qint8); layer1_0_relu_1 = layer1_0_relu_output_scale_0 = layer1_0_relu_output_zero_point_0 = None
dequantize_6 = quantize_per_tensor_6.dequantize(); quantize_per_tensor_6 = None
layer1_1_conv1 = getattr(self.layer1, "1").conv1(dequantize_6)
layer1_1_conv1_output_scale_0 = self.layer1_1_conv1_output_scale_0
layer1_1_conv1_output_zero_point_0 = self.layer1_1_conv1_output_zero_point_0
quantize_per_tensor_7 = torch.quantize_per_tensor(layer1_1_conv1, layer1_1_conv1_output_scale_0, layer1_1_conv1_output_zero_point_0, torch.qint8); layer1_1_conv1 = layer1_1_conv1_output_scale_0 = layer1_1_conv1_output_zero_point_0 = None
dequantize_7 = quantize_per_tensor_7.dequantize(); quantize_per_tensor_7 = None
layer1_1_conv2 = getattr(self.layer1, "1").conv2(dequantize_7); dequantize_7 = None
layer1_1_conv2_output_scale_0 = self.layer1_1_conv2_output_scale_0
layer1_1_conv2_output_zero_point_0 = self.layer1_1_conv2_output_zero_point_0
quantize_per_tensor_8 = torch.quantize_per_tensor(layer1_1_conv2, layer1_1_conv2_output_scale_0, layer1_1_conv2_output_zero_point_0, torch.qint8); layer1_1_conv2 = layer1_1_conv2_output_scale_0 = layer1_1_conv2_output_zero_point_0 = None
dequantize_8 = quantize_per_tensor_8.dequantize(); quantize_per_tensor_8 = None
add_1 = dequantize_8 + dequantize_6; dequantize_8 = dequantize_6 = None
layer1_1_relu_input_scale_0 = self.layer1_1_relu_input_scale_0
layer1_1_relu_input_zero_point_0 = self.layer1_1_relu_input_zero_point_0
quantize_per_tensor_9 = torch.quantize_per_tensor(add_1, layer1_1_relu_input_scale_0, layer1_1_relu_input_zero_point_0, torch.qint8); add_1 = layer1_1_relu_input_scale_0 = layer1_1_relu_input_zero_point_0 = None
dequantize_9 = quantize_per_tensor_9.dequantize(); quantize_per_tensor_9 = None
layer1_1_relu_1 = getattr(self.layer1, "1").relu(dequantize_9); dequantize_9 = None
layer1_1_relu_output_scale_0 = self.layer1_1_relu_output_scale_0
layer1_1_relu_output_zero_point_0 = self.layer1_1_relu_output_zero_point_0
quantize_per_tensor_10 = torch.quantize_per_tensor(layer1_1_relu_1, layer1_1_relu_output_scale_0, layer1_1_relu_output_zero_point_0, torch.qint8); layer1_1_relu_1 = layer1_1_relu_output_scale_0 = layer1_1_relu_output_zero_point_0 = None
dequantize_10 = quantize_per_tensor_10.dequantize(); quantize_per_tensor_10 = None
layer2_0_conv1 = getattr(self.layer2, "0").conv1(dequantize_10)
layer2_0_conv1_output_scale_0 = self.layer2_0_conv1_output_scale_0
layer2_0_conv1_output_zero_point_0 = self.layer2_0_conv1_output_zero_point_0
quantize_per_tensor_11 = torch.quantize_per_tensor(layer2_0_conv1, layer2_0_conv1_output_scale_0, layer2_0_conv1_output_zero_point_0, torch.qint8); layer2_0_conv1 = layer2_0_conv1_output_scale_0 = layer2_0_conv1_output_zero_point_0 = None
dequantize_11 = quantize_per_tensor_11.dequantize(); quantize_per_tensor_11 = None
layer2_0_conv2 = getattr(self.layer2, "0").conv2(dequantize_11); dequantize_11 = None
layer2_0_conv2_output_scale_0 = self.layer2_0_conv2_output_scale_0
layer2_0_conv2_output_zero_point_0 = self.layer2_0_conv2_output_zero_point_0
quantize_per_tensor_12 = torch.quantize_per_tensor(layer2_0_conv2, layer2_0_conv2_output_scale_0, layer2_0_conv2_output_zero_point_0, torch.qint8); layer2_0_conv2 = layer2_0_conv2_output_scale_0 = layer2_0_conv2_output_zero_point_0 = None
layer2_0_downsample_0 = getattr(getattr(self.layer2, "0").downsample, "0")(dequantize_10); dequantize_10 = None
layer2_0_downsample_0_output_scale_0 = self.layer2_0_downsample_0_output_scale_0
layer2_0_downsample_0_output_zero_point_0 = self.layer2_0_downsample_0_output_zero_point_0
quantize_per_tensor_13 = torch.quantize_per_tensor(layer2_0_downsample_0, layer2_0_downsample_0_output_scale_0, layer2_0_downsample_0_output_zero_point_0, torch.qint8); layer2_0_downsample_0 = layer2_0_downsample_0_output_scale_0 = layer2_0_downsample_0_output_zero_point_0 = None
dequantize_12 = quantize_per_tensor_12.dequantize(); quantize_per_tensor_12 = None
dequantize_13 = quantize_per_tensor_13.dequantize(); quantize_per_tensor_13 = None
add_2 = dequantize_12 + dequantize_13; dequantize_12 = dequantize_13 = None
layer2_0_relu_input_scale_0 = self.layer2_0_relu_input_scale_0
layer2_0_relu_input_zero_point_0 = self.layer2_0_relu_input_zero_point_0
quantize_per_tensor_14 = torch.quantize_per_tensor(add_2, layer2_0_relu_input_scale_0, layer2_0_relu_input_zero_point_0, torch.qint8); add_2 = layer2_0_relu_input_scale_0 = layer2_0_relu_input_zero_point_0 = None
dequantize_14 = quantize_per_tensor_14.dequantize(); quantize_per_tensor_14 = None
layer2_0_relu_1 = getattr(self.layer2, "0").relu(dequantize_14); dequantize_14 = None
layer2_0_relu_output_scale_0 = self.layer2_0_relu_output_scale_0
layer2_0_relu_output_zero_point_0 = self.layer2_0_relu_output_zero_point_0
quantize_per_tensor_15 = torch.quantize_per_tensor(layer2_0_relu_1, layer2_0_relu_output_scale_0, layer2_0_relu_output_zero_point_0, torch.qint8); layer2_0_relu_1 = layer2_0_relu_output_scale_0 = layer2_0_relu_output_zero_point_0 = None
dequantize_15 = quantize_per_tensor_15.dequantize(); quantize_per_tensor_15 = None
layer2_1_conv1 = getattr(self.layer2, "1").conv1(dequantize_15)
layer2_1_conv1_output_scale_0 = self.layer2_1_conv1_output_scale_0
layer2_1_conv1_output_zero_point_0 = self.layer2_1_conv1_output_zero_point_0
quantize_per_tensor_16 = torch.quantize_per_tensor(layer2_1_conv1, layer2_1_conv1_output_scale_0, layer2_1_conv1_output_zero_point_0, torch.qint8); layer2_1_conv1 = layer2_1_conv1_output_scale_0 = layer2_1_conv1_output_zero_point_0 = None
dequantize_16 = quantize_per_tensor_16.dequantize(); quantize_per_tensor_16 = None
layer2_1_conv2 = getattr(self.layer2, "1").conv2(dequantize_16); dequantize_16 = None
layer2_1_conv2_output_scale_0 = self.layer2_1_conv2_output_scale_0
layer2_1_conv2_output_zero_point_0 = self.layer2_1_conv2_output_zero_point_0
quantize_per_tensor_17 = torch.quantize_per_tensor(layer2_1_conv2, layer2_1_conv2_output_scale_0, layer2_1_conv2_output_zero_point_0, torch.qint8); layer2_1_conv2 = layer2_1_conv2_output_scale_0 = layer2_1_conv2_output_zero_point_0 = None
dequantize_17 = quantize_per_tensor_17.dequantize(); quantize_per_tensor_17 = None
add_3 = dequantize_17 + dequantize_15; dequantize_17 = dequantize_15 = None
layer2_1_relu_input_scale_0 = self.layer2_1_relu_input_scale_0
layer2_1_relu_input_zero_point_0 = self.layer2_1_relu_input_zero_point_0
quantize_per_tensor_18 = torch.quantize_per_tensor(add_3, layer2_1_relu_input_scale_0, layer2_1_relu_input_zero_point_0, torch.qint8); add_3 = layer2_1_relu_input_scale_0 = layer2_1_relu_input_zero_point_0 = None
dequantize_18 = quantize_per_tensor_18.dequantize(); quantize_per_tensor_18 = None
layer2_1_relu_1 = getattr(self.layer2, "1").relu(dequantize_18); dequantize_18 = None
layer2_1_relu_output_scale_0 = self.layer2_1_relu_output_scale_0
layer2_1_relu_output_zero_point_0 = self.layer2_1_relu_output_zero_point_0
quantize_per_tensor_19 = torch.quantize_per_tensor(layer2_1_relu_1, layer2_1_relu_output_scale_0, layer2_1_relu_output_zero_point_0, torch.qint8); layer2_1_relu_1 = layer2_1_relu_output_scale_0 = layer2_1_relu_output_zero_point_0 = None
dequantize_19 = quantize_per_tensor_19.dequantize(); quantize_per_tensor_19 = None
layer3_0_conv1 = getattr(self.layer3, "0").conv1(dequantize_19)
layer3_0_conv1_output_scale_0 = self.layer3_0_conv1_output_scale_0
layer3_0_conv1_output_zero_point_0 = self.layer3_0_conv1_output_zero_point_0
quantize_per_tensor_20 = torch.quantize_per_tensor(layer3_0_conv1, layer3_0_conv1_output_scale_0, layer3_0_conv1_output_zero_point_0, torch.qint8); layer3_0_conv1 = layer3_0_conv1_output_scale_0 = layer3_0_conv1_output_zero_point_0 = None
dequantize_20 = quantize_per_tensor_20.dequantize(); quantize_per_tensor_20 = None
layer3_0_conv2 = getattr(self.layer3, "0").conv2(dequantize_20); dequantize_20 = None
layer3_0_conv2_output_scale_0 = self.layer3_0_conv2_output_scale_0
layer3_0_conv2_output_zero_point_0 = self.layer3_0_conv2_output_zero_point_0
quantize_per_tensor_21 = torch.quantize_per_tensor(layer3_0_conv2, layer3_0_conv2_output_scale_0, layer3_0_conv2_output_zero_point_0, torch.qint8); layer3_0_conv2 = layer3_0_conv2_output_scale_0 = layer3_0_conv2_output_zero_point_0 = None
layer3_0_downsample_0 = getattr(getattr(self.layer3, "0").downsample, "0")(dequantize_19); dequantize_19 = None
layer3_0_downsample_0_output_scale_0 = self.layer3_0_downsample_0_output_scale_0
layer3_0_downsample_0_output_zero_point_0 = self.layer3_0_downsample_0_output_zero_point_0
quantize_per_tensor_22 = torch.quantize_per_tensor(layer3_0_downsample_0, layer3_0_downsample_0_output_scale_0, layer3_0_downsample_0_output_zero_point_0, torch.qint8); layer3_0_downsample_0 = layer3_0_downsample_0_output_scale_0 = layer3_0_downsample_0_output_zero_point_0 = None
dequantize_21 = quantize_per_tensor_21.dequantize(); quantize_per_tensor_21 = None
dequantize_22 = quantize_per_tensor_22.dequantize(); quantize_per_tensor_22 = None
add_4 = dequantize_21 + dequantize_22; dequantize_21 = dequantize_22 = None
layer3_0_relu_input_scale_0 = self.layer3_0_relu_input_scale_0
layer3_0_relu_input_zero_point_0 = self.layer3_0_relu_input_zero_point_0
quantize_per_tensor_23 = torch.quantize_per_tensor(add_4, layer3_0_relu_input_scale_0, layer3_0_relu_input_zero_point_0, torch.qint8); add_4 = layer3_0_relu_input_scale_0 = layer3_0_relu_input_zero_point_0 = None
dequantize_23 = quantize_per_tensor_23.dequantize(); quantize_per_tensor_23 = None
layer3_0_relu_1 = getattr(self.layer3, "0").relu(dequantize_23); dequantize_23 = None
layer3_0_relu_output_scale_0 = self.layer3_0_relu_output_scale_0
layer3_0_relu_output_zero_point_0 = self.layer3_0_relu_output_zero_point_0
quantize_per_tensor_24 = torch.quantize_per_tensor(layer3_0_relu_1, layer3_0_relu_output_scale_0, layer3_0_relu_output_zero_point_0, torch.qint8); layer3_0_relu_1 = layer3_0_relu_output_scale_0 = layer3_0_relu_output_zero_point_0 = None
dequantize_24 = quantize_per_tensor_24.dequantize(); quantize_per_tensor_24 = None
layer3_1_conv1 = getattr(self.layer3, "1").conv1(dequantize_24)
layer3_1_conv1_output_scale_0 = self.layer3_1_conv1_output_scale_0
layer3_1_conv1_output_zero_point_0 = self.layer3_1_conv1_output_zero_point_0
quantize_per_tensor_25 = torch.quantize_per_tensor(layer3_1_conv1, layer3_1_conv1_output_scale_0, layer3_1_conv1_output_zero_point_0, torch.qint8); layer3_1_conv1 = layer3_1_conv1_output_scale_0 = layer3_1_conv1_output_zero_point_0 = None
dequantize_25 = quantize_per_tensor_25.dequantize(); quantize_per_tensor_25 = None
layer3_1_conv2 = getattr(self.layer3, "1").conv2(dequantize_25); dequantize_25 = None
layer3_1_conv2_output_scale_0 = self.layer3_1_conv2_output_scale_0
layer3_1_conv2_output_zero_point_0 = self.layer3_1_conv2_output_zero_point_0
quantize_per_tensor_26 = torch.quantize_per_tensor(layer3_1_conv2, layer3_1_conv2_output_scale_0, layer3_1_conv2_output_zero_point_0, torch.qint8); layer3_1_conv2 = layer3_1_conv2_output_scale_0 = layer3_1_conv2_output_zero_point_0 = None
dequantize_26 = quantize_per_tensor_26.dequantize(); quantize_per_tensor_26 = None
add_5 = dequantize_26 + dequantize_24; dequantize_26 = dequantize_24 = None
layer3_1_relu_input_scale_0 = self.layer3_1_relu_input_scale_0
layer3_1_relu_input_zero_point_0 = self.layer3_1_relu_input_zero_point_0
quantize_per_tensor_27 = torch.quantize_per_tensor(add_5, layer3_1_relu_input_scale_0, layer3_1_relu_input_zero_point_0, torch.qint8); add_5 = layer3_1_relu_input_scale_0 = layer3_1_relu_input_zero_point_0 = None
dequantize_27 = quantize_per_tensor_27.dequantize(); quantize_per_tensor_27 = None
layer3_1_relu_1 = getattr(self.layer3, "1").relu(dequantize_27); dequantize_27 = None
layer3_1_relu_output_scale_0 = self.layer3_1_relu_output_scale_0
layer3_1_relu_output_zero_point_0 = self.layer3_1_relu_output_zero_point_0
quantize_per_tensor_28 = torch.quantize_per_tensor(layer3_1_relu_1, layer3_1_relu_output_scale_0, layer3_1_relu_output_zero_point_0, torch.qint8); layer3_1_relu_1 = layer3_1_relu_output_scale_0 = layer3_1_relu_output_zero_point_0 = None
dequantize_28 = quantize_per_tensor_28.dequantize(); quantize_per_tensor_28 = None
layer4_0_conv1 = getattr(self.layer4, "0").conv1(dequantize_28)
layer4_0_conv1_output_scale_0 = self.layer4_0_conv1_output_scale_0
layer4_0_conv1_output_zero_point_0 = self.layer4_0_conv1_output_zero_point_0
quantize_per_tensor_29 = torch.quantize_per_tensor(layer4_0_conv1, layer4_0_conv1_output_scale_0, layer4_0_conv1_output_zero_point_0, torch.qint8); layer4_0_conv1 = layer4_0_conv1_output_scale_0 = layer4_0_conv1_output_zero_point_0 = None
dequantize_29 = quantize_per_tensor_29.dequantize(); quantize_per_tensor_29 = None
layer4_0_conv2 = getattr(self.layer4, "0").conv2(dequantize_29); dequantize_29 = None
layer4_0_conv2_output_scale_0 = self.layer4_0_conv2_output_scale_0
layer4_0_conv2_output_zero_point_0 = self.layer4_0_conv2_output_zero_point_0
quantize_per_tensor_30 = torch.quantize_per_tensor(layer4_0_conv2, layer4_0_conv2_output_scale_0, layer4_0_conv2_output_zero_point_0, torch.qint8); layer4_0_conv2 = layer4_0_conv2_output_scale_0 = layer4_0_conv2_output_zero_point_0 = None
layer4_0_downsample_0 = getattr(getattr(self.layer4, "0").downsample, "0")(dequantize_28); dequantize_28 = None
layer4_0_downsample_0_output_scale_0 = self.layer4_0_downsample_0_output_scale_0
layer4_0_downsample_0_output_zero_point_0 = self.layer4_0_downsample_0_output_zero_point_0
quantize_per_tensor_31 = torch.quantize_per_tensor(layer4_0_downsample_0, layer4_0_downsample_0_output_scale_0, layer4_0_downsample_0_output_zero_point_0, torch.qint8); layer4_0_downsample_0 = layer4_0_downsample_0_output_scale_0 = layer4_0_downsample_0_output_zero_point_0 = None
dequantize_30 = quantize_per_tensor_30.dequantize(); quantize_per_tensor_30 = None
dequantize_31 = quantize_per_tensor_31.dequantize(); quantize_per_tensor_31 = None
add_6 = dequantize_30 + dequantize_31; dequantize_30 = dequantize_31 = None
layer4_0_relu_input_scale_0 = self.layer4_0_relu_input_scale_0
layer4_0_relu_input_zero_point_0 = self.layer4_0_relu_input_zero_point_0
quantize_per_tensor_32 = torch.quantize_per_tensor(add_6, layer4_0_relu_input_scale_0, layer4_0_relu_input_zero_point_0, torch.qint8); add_6 = layer4_0_relu_input_scale_0 = layer4_0_relu_input_zero_point_0 = None
dequantize_32 = quantize_per_tensor_32.dequantize(); quantize_per_tensor_32 = None
layer4_0_relu_1 = getattr(self.layer4, "0").relu(dequantize_32); dequantize_32 = None
layer4_0_relu_output_scale_0 = self.layer4_0_relu_output_scale_0
layer4_0_relu_output_zero_point_0 = self.layer4_0_relu_output_zero_point_0
quantize_per_tensor_33 = torch.quantize_per_tensor(layer4_0_relu_1, layer4_0_relu_output_scale_0, layer4_0_relu_output_zero_point_0, torch.qint8); layer4_0_relu_1 = layer4_0_relu_output_scale_0 = layer4_0_relu_output_zero_point_0 = None
dequantize_33 = quantize_per_tensor_33.dequantize(); quantize_per_tensor_33 = None
layer4_1_conv1 = getattr(self.layer4, "1").conv1(dequantize_33)
layer4_1_conv1_output_scale_0 = self.layer4_1_conv1_output_scale_0
layer4_1_conv1_output_zero_point_0 = self.layer4_1_conv1_output_zero_point_0
quantize_per_tensor_34 = torch.quantize_per_tensor(layer4_1_conv1, layer4_1_conv1_output_scale_0, layer4_1_conv1_output_zero_point_0, torch.qint8); layer4_1_conv1 = layer4_1_conv1_output_scale_0 = layer4_1_conv1_output_zero_point_0 = None
dequantize_34 = quantize_per_tensor_34.dequantize(); quantize_per_tensor_34 = None
layer4_1_conv2 = getattr(self.layer4, "1").conv2(dequantize_34); dequantize_34 = None
layer4_1_conv2_output_scale_0 = self.layer4_1_conv2_output_scale_0
layer4_1_conv2_output_zero_point_0 = self.layer4_1_conv2_output_zero_point_0
quantize_per_tensor_35 = torch.quantize_per_tensor(layer4_1_conv2, layer4_1_conv2_output_scale_0, layer4_1_conv2_output_zero_point_0, torch.qint8); layer4_1_conv2 = layer4_1_conv2_output_scale_0 = layer4_1_conv2_output_zero_point_0 = None
dequantize_35 = quantize_per_tensor_35.dequantize(); quantize_per_tensor_35 = None
add_7 = dequantize_35 + dequantize_33; dequantize_35 = dequantize_33 = None
layer4_1_relu_input_scale_0 = self.layer4_1_relu_input_scale_0
layer4_1_relu_input_zero_point_0 = self.layer4_1_relu_input_zero_point_0
quantize_per_tensor_36 = torch.quantize_per_tensor(add_7, layer4_1_relu_input_scale_0, layer4_1_relu_input_zero_point_0, torch.qint8); add_7 = layer4_1_relu_input_scale_0 = layer4_1_relu_input_zero_point_0 = None
dequantize_36 = quantize_per_tensor_36.dequantize(); quantize_per_tensor_36 = None
layer4_1_relu_1 = getattr(self.layer4, "1").relu(dequantize_36); dequantize_36 = None
layer4_1_relu_output_scale_0 = self.layer4_1_relu_output_scale_0
layer4_1_relu_output_zero_point_0 = self.layer4_1_relu_output_zero_point_0
quantize_per_tensor_37 = torch.quantize_per_tensor(layer4_1_relu_1, layer4_1_relu_output_scale_0, layer4_1_relu_output_zero_point_0, torch.qint8); layer4_1_relu_1 = layer4_1_relu_output_scale_0 = layer4_1_relu_output_zero_point_0 = None
dequantize_37 = quantize_per_tensor_37.dequantize(); quantize_per_tensor_37 = None
avgpool = self.avgpool(dequantize_37); dequantize_37 = None
avgpool_output_scale_0 = self.avgpool_output_scale_0
avgpool_output_zero_point_0 = self.avgpool_output_zero_point_0
quantize_per_tensor_38 = torch.quantize_per_tensor(avgpool, avgpool_output_scale_0, avgpool_output_zero_point_0, torch.qint8); avgpool = avgpool_output_scale_0 = avgpool_output_zero_point_0 = None
flatten = torch.flatten(quantize_per_tensor_38, 1); quantize_per_tensor_38 = None
dequantize_38 = flatten.dequantize(); flatten = None
fc = self.fc(dequantize_38); dequantize_38 = None
fc_output_scale_0 = self.fc_output_scale_0
fc_output_zero_point_0 = self.fc_output_zero_point_0
quantize_per_tensor_39 = torch.quantize_per_tensor(fc, fc_output_scale_0, fc_output_zero_point_0, torch.qint8); fc = fc_output_scale_0 = fc_output_zero_point_0 = None
dequantize_39 = quantize_per_tensor_39.dequantize(); quantize_per_tensor_39 = None
return dequantize_39
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment