Created
October 5, 2024 01:22
-
-
Save jerryzh168/ec82a8d14b4aa848e29b56eeba750852 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchvision import models | |
import torch | |
## compilation configs | |
torch._dynamo.config.automatic_dynamic_shapes = False | |
torch._inductor.config.force_fuse_int_mm_with_mul = True | |
torch._inductor.config.use_mixed_mm = True | |
## compilation configs end | |
# temporary workaround to recover the perf with quantized model under torch.compile | |
torch.backends.mha.set_fastpath_enabled(False) | |
import torch | |
from diffusers import FluxPipeline, FluxTransformer2DModel | |
import torch.utils.benchmark as benchmark | |
from functools import partial | |
def get_example_inputs(): | |
example_inputs = (torch.randn(1, 3, 224, 224, dtype=torch.bfloat16, device='cuda'),) | |
return example_inputs | |
def benchmark_fn(f, *args, **kwargs): | |
t0 = benchmark.Timer( | |
stmt="f(*args, **kwargs)", | |
globals={"args": args, "kwargs": kwargs, "f": f}, | |
num_threads=torch.get_num_threads(), | |
) | |
return f"{(t0.blocked_autorange().mean):.3f}" | |
def load_model(): | |
torch.set_float32_matmul_precision("high") | |
model = models.vit_b_16(weights=models.ViT_B_16_Weights.IMAGENET1K_V1) | |
model.eval().cuda().to(torch.bfloat16) | |
return model | |
def aot_compile(name, fn, sample_args): | |
path = f"./{name}.so" | |
print(f"{path=}") | |
options = { | |
"aot_inductor.output_path": path, | |
"max_autotune": True, | |
"triton.cudagraphs": True, | |
} | |
torch._export.aot_compile( | |
fn, | |
sample_args, | |
{}, | |
options=options, | |
disable_constraint_solver=True, | |
) | |
return path | |
def aot_load(path): | |
return torch._export.aot_load(path, "cuda") | |
@torch.no_grad() | |
def f(model, *args): | |
return model(*args) | |
model = load_model() | |
from torchao.quantization import autoquant | |
from torchao.quantization import quantize_, int4_weight_only | |
from torchao.utils import unwrap_tensor_subclass | |
model = autoquant(torch.compile(model, mode="max-autotune")) | |
# quantize_(model, int4_weight_only()) | |
inputs1 = get_example_inputs() | |
import torch | |
torch._dynamo.config.verbose=True | |
model(*inputs1) | |
unwrap_tensor_subclass(model) | |
path1 = aot_compile("bs_1_1024", partial(f, model), inputs1) | |
compiled_func_1 = aot_load(path1) | |
print(f"{compiled_func_1(*inputs1)[0].shape=}") | |
for _ in range(5): | |
_ = compiled_func_1(*inputs1)[0] | |
time = benchmark_fn(f, compiled_func_1, *inputs1) | |
print(time) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment