-
-
Save jesperalmstrom/ac537a54c9d5f686456f8cf3a7699ae7 to your computer and use it in GitHub Desktop.
Lists the storage size (for all storage types) and tags of all S3 buckets in an account using CloudWatch's GetMetricStatistics. Uses the default AWS credentials in your environment. (See awscli configuration for more information.). Add your profile as a argument when running.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
import botocore | |
import datetime | |
import progressbar | |
import itertools | |
import argparse | |
# from https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudwatch-monitoring.html | |
STORAGE_TYPES = [ | |
"StandardStorage", | |
"IntelligentTieringStorage", | |
"StandardIAStorage", | |
"StandardIASizeOverhead", | |
"StandardIAObjectOverhead", | |
"OneZoneIAStorage", | |
"OneZoneIASizeOverhead", | |
"ReducedRedundancyStorage", | |
"GlacierStorage", | |
"GlacierStagingStorage", | |
"GlacierObjectOverhead", | |
"GlacierS3ObjectOverhead", | |
"DeepArchiveStorage", | |
"DeepArchiveObjectOverhead", | |
"DeepArchiveS3ObjectOverhead", | |
"DeepArchiveStagingStorage" | |
] | |
now = datetime.datetime.now() | |
# parse arguments | |
parser = argparse.ArgumentParser() | |
parser.add_argument("profile", type=str, help="The aws profile to use") | |
args = parser.parse_args() | |
# Set your profile name on a low-level Botocore session | |
boto3.setup_default_session(profile_name=args.profile) | |
cw = boto3.client('cloudwatch') | |
s3client = boto3.client('s3') | |
# Get a list of all buckets | |
allbuckets = s3client.list_buckets() | |
# Grab all the bucket tags for pretty display | |
print('Getting bucket tags...') | |
tag_bar = progressbar.ProgressBar() | |
bucket_tags = {} | |
for bucket in tag_bar(allbuckets['Buckets']): | |
try: | |
bucket_tagging = s3client.get_bucket_tagging(Bucket=bucket['Name']) | |
bucket_tags[bucket['Name']] = bucket_tagging['TagSet'] | |
except botocore.exceptions.ClientError: | |
bucket_tags[bucket['Name']] = [] | |
# Look up the storage for each storage type from CloudWatch | |
print('Calculating storage usage...') | |
bucket_info = [] | |
start_time = now - datetime.timedelta(days=2) | |
end_time = now - datetime.timedelta(days=1) | |
main_bar = progressbar.ProgressBar() | |
bucket_storages = list(itertools.product(allbuckets['Buckets'], STORAGE_TYPES)) | |
for bucket, storage_type in main_bar(bucket_storages): | |
metrics = cw.get_metric_statistics( | |
Namespace='AWS/S3', | |
MetricName='BucketSizeBytes', | |
Dimensions=[ | |
{'Name': 'BucketName', 'Value': bucket['Name']}, | |
{'Name': 'StorageType', 'Value': storage_type} | |
], | |
Statistics=['Average'], | |
Period=3600, | |
StartTime=start_time.isoformat(), | |
EndTime=end_time.isoformat() | |
) | |
# The cloudwatch metrics will have the single datapoint, so we just report on it. | |
for item in metrics["Datapoints"]: | |
size_bytes = int(item['Average']) | |
size_gb = size_bytes/1024/1024/1024 | |
bucket_info.append({ | |
'name': '{} ({})'.format(bucket['Name'], storage_type), | |
'size': size_gb, | |
'tags': bucket_tags[bucket['Name']] | |
}) | |
# Pretty looking tags | |
def format_tags(tags): | |
return ', '.join([ | |
'{}={}'.format(tag['Key'], tag['Value']) | |
for tag in tags | |
]) | |
# Header Line for the output going to standard out | |
format_string = '{: <75} {: >15} {: <100}' | |
print(format_string.format('Bucket', 'Size (GiB)', 'Tags')) | |
for bucket in sorted(bucket_info, key=lambda x: x['size'], reverse=True): | |
print(format_string.format( | |
bucket['name'], | |
'{:.2f}'.format(bucket['size']), | |
format_tags(bucket['tags']))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment