The icosahedron serves as the base shape for the geodesic sphere; each face can be subdivided an arbitrary number of times to approximate the sphere with triangles.
-
-
Save jesseflorig/eb9055cf35aa61fc491a to your computer and use it in GitHub Desktop.
Rotating Icosahedron
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<meta charset="utf-8"> | |
<style> | |
path { | |
fill: #f88e22; | |
stroke: #fff; | |
stroke-width: 2px; | |
} | |
</style> | |
<body> | |
<script src="//d3js.org/d3.v3.min.js"></script> | |
<script> | |
var width = 960, | |
height = 500; | |
var velocity = [.010, .005], | |
t0 = Date.now(); | |
var projection = d3.geo.orthographic() | |
.scale(height / 2 - 10); | |
var svg = d3.select("body").append("svg") | |
.attr("width", width) | |
.attr("height", height); | |
var face = svg.selectAll("path") | |
.data(icosahedronFaces) | |
.enter().append("path") | |
.each(function(d) { d.polygon = d3.geom.polygon(d.map(projection)); }); | |
d3.timer(function() { | |
var time = Date.now() - t0; | |
projection.rotate([time * velocity[0], time * velocity[1]]); | |
face | |
.each(function(d) { d.forEach(function(p, i) { d.polygon[i] = projection(p); }); }) | |
.style("display", function(d) { return d.polygon.area() > 0 ? null : "none"; }) | |
.attr("d", function(d) { return "M" + d.polygon.join("L") + "Z"; }); | |
}); | |
function icosahedronFaces() { | |
var faces = [], | |
y = Math.atan2(1, 2) * 180 / Math.PI; | |
for (var x = 0; x < 360; x += 72) { | |
faces.push( | |
[[x + 0, -90], [x + 0, -y], [x + 72, -y]], | |
[[x + 36, y], [x + 72, -y], [x + 0, -y]], | |
[[x + 36, y], [x + 0, -y], [x - 36, y]], | |
[[x + 36, y], [x - 36, y], [x - 36, 90]] | |
); | |
} | |
return faces; | |
} | |
</script> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment