Skip to content

Instantly share code, notes, and snippets.

@jesusjda
Created July 15, 2019 13:37
Show Gist options
  • Save jesusjda/6d4046fa592f78c4e2759d41e4b39000 to your computer and use it in GitHub Desktop.
Save jesusjda/6d4046fa592f78c4e2759d41e4b39000 to your computer and use it in GitHub Desktop.
Classifier
'''
Created on Jul 15, 2019
@author: Jesus Doménech
@email [email protected]
'''
# TO INSTALL: run following commands
# pip3 install -U sklearn numpy
# - if you want to plot you will also need matplotlib
# pip3 install -U matplotlib
# TO RUN: go to the bottom of the file
import numpy as np
from sklearn.svm import SVC, LinearSVC
BAD_CLASS = -1000
GOOD_CLASS = 1000
def split(good_points, bad_points):
bad_y = [BAD_CLASS] * len(bad_points)
good_y = [GOOD_CLASS] * len(good_points)
X = np.array(bad_points + good_points)
Y = np.array(bad_y + good_y)
# Choose which classifier you want to use.
### 1 - Perceptron
# clf = Perceptron()
### 2 - linear
# clf = LinearSVC()
### 3 - SVM
clf = SVC(kernel="linear")
clf.fit(X, Y)
line = []
try:
line.append(clf.intercept_[0])
for i in range(len(clf.coef_[0])):
line.append(clf.coef_[0][i])
# You can call plot to print the line and the good and bad points
# it only works if you are using dimension 2
plot(clf, X, Y)
return line
except TypeError:
return None
def plot(classifier, X, Y):
if len(X) == 0 or len(X[0]) != 2:
return
import matplotlib.pyplot as plt
w = classifier.coef_[0]
if w[1] == 0:
yy = np.linspace(min([Xi[1] for Xi in X]) - 2, max([Xi[1] for Xi in X]) + 2)
# yy_down = yy_up = yy
a = 0
xx = [- (classifier.intercept_[0]) / w[0]] * len(yy)
else:
xx = np.linspace(min([Xi[0] for Xi in X]) - 2, max([Xi[0] for Xi in X]) + 2)
# xx_down = xx_up = xx
a = -w[0] / w[1]
yy = a * xx - (classifier.intercept_[0]) / w[1]
plt.plot(xx, yy, 'k-')
plt.scatter(X[:, 0], X[:, 1], c=Y)
plt.axis('tight')
plt.show()
class Perceptron(object):
"""Perceptron classifier.
Parameters
------------
eta : float
Learning rate (between 0.0 and 1.0)
n_iter : int
Passes over the training dataset.
Attributes
-----------
w_ : 1d-array
Weights after fitting.
errors_ : list
Number of misclassifications in every epoch.
"""
def __init__(self, eta=0.2, n_iter=100):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
"""Fit training data.
Parameters
----------
X : {array-like}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : object
"""
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []
for __ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
self.coef_ = [list(self.w_[1:])]
self.intercept_ = [-self.w_[0]]
return self
def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.net_input(X) >= 0.0, 1, -1)
# DON'T REMOVE THIS LINE
if __name__ == '__main__':
# This lines will be run we you execute the command:
# python3 classify.py
# 1 - Generate good and bad points
goods = [[i, -10] for i in range(1000)]
bads = [[i, 10] for i in range(1000)]
# 2 - Call split
line = split(goods, bads)
# 3 - Analyze the output
# The first position is the independent term.
# The rest are the coeffs
print(line)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment