Created
January 18, 2015 21:17
-
-
Save jfaganUK/ad83c8378bf320614eb4 to your computer and use it in GitHub Desktop.
analyze lots of networks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(data.table) | |
library(igraph) | |
x <- fread("all_networks_140923.csv") | |
igraph.options(vertex.label = NA, edge.arrow.size = 0, vertex.size = 5) | |
g <- graph.data.frame(x[,list(source, target, weight, type, survey)]) | |
### Graph level statistics ################################################### size | |
# edges | |
# density | |
# components | |
# apl | |
# modularity | |
### filter the graph | |
graph.stats <- function(edge.type, edge.survey) { | |
g1 <- subgraph.edges(g, which(E(g)$type == edge.type & E(g)$survey == edge.survey), delete.vertices = T) | |
g1 <- simplify(as.undirected(g1)) | |
m <- edge.betweenness.community(g1) | |
bet <- betweenness(g1) | |
data.table(type = edge.type, survey = edge.survey, | |
size = vcount(g1), | |
edge.count = length(E(g1)), | |
density = graph.density(g1), | |
components = clusters(g1)$no, | |
avg.path.length = average.path.length(g1), | |
modularity = modularity(m), | |
centralization = centralization.degree(g1)$centralization, | |
assortativity = assortativity.degree(g1), | |
bet.m = mean(bet, na.rm=T) | |
bet.sd = sd(bet, na.rm=T)) | |
} | |
survey.u <- x[,.N, by=list(survey,type)][,N := NULL] | |
graph.stats("know", "fu13") | |
all.stats <- data.table(type = character(), survey = character(), | |
size = numeric(), edge.count = numeric(), | |
density = numeric(), components = numeric(), | |
avg.path.length = numeric(), modularity = numeric(), | |
centralization = numeric(), | |
assortativity = numeric()) | |
for(i in 1:6) { | |
cat("Running stats for ", survey.u$type[i], " and ", survey.u$survey[i], "\n", sep="") | |
all.stats <- rbind(all.stats, | |
graph.stats(edge.type = survey.u$type[i], | |
edge.survey = survey.u$survey[i])) | |
} | |
#cat("Running stats for zipcode ", i, " of ", length(zip.u), "\n", sep="") | |
xx <- do.call('rbind', mclapply(1:nrow(survey.u), | |
function(i) { | |
graph.stats(edge.type = survey.u$type[i], edge.survey = survey.u$survey[i]) | |
}, mc.cores = 6)) | |
gs <- list() | |
for(i in 1:nrow(survey.u)) { | |
gs[[i]] <- subgraph.edges(g, which(E(g)$type == survey.u$type[i] & E(g)$survey == survey.u$survey[i]), delete.vertices = T) | |
} | |
lapply(gs, "graph.density") | |
# izip = indexed zip | |
izip <- 40517 | |
g <- induced.subgraph(a, vids = which(V(a)$zip3 == izip)) | |
### Node level stats ########################################################## | |
# centralities | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment