Created
August 26, 2022 17:00
-
-
Save jfjensen/ec59c2248e42644d9d993b77c8e9fa30 to your computer and use it in GitHub Desktop.
This is a program that detects and estimates the pose of ArUco markers from video input.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from imutils.video import VideoStream | |
import argparse | |
import imutils | |
import time | |
import cv2 | |
import sys | |
import json | |
import numpy as np | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-t", "--type", type=str, | |
default="DICT_ARUCO_ORIGINAL", | |
help="type of ArUCo tag to detect") | |
args = vars(ap.parse_args()) | |
ARUCO_DICT = { | |
"DICT_4X4_50": cv2.aruco.DICT_4X4_50, | |
"DICT_4X4_100": cv2.aruco.DICT_4X4_100, | |
"DICT_4X4_250": cv2.aruco.DICT_4X4_250, | |
"DICT_4X4_1000": cv2.aruco.DICT_4X4_1000, | |
"DICT_5X5_50": cv2.aruco.DICT_5X5_50, | |
"DICT_5X5_100": cv2.aruco.DICT_5X5_100, | |
"DICT_5X5_250": cv2.aruco.DICT_5X5_250, | |
"DICT_5X5_1000": cv2.aruco.DICT_5X5_1000, | |
"DICT_6X6_50": cv2.aruco.DICT_6X6_50, | |
"DICT_6X6_100": cv2.aruco.DICT_6X6_100, | |
"DICT_6X6_250": cv2.aruco.DICT_6X6_250, | |
"DICT_6X6_1000": cv2.aruco.DICT_6X6_1000, | |
"DICT_7X7_50": cv2.aruco.DICT_7X7_50, | |
"DICT_7X7_100": cv2.aruco.DICT_7X7_100, | |
"DICT_7X7_250": cv2.aruco.DICT_7X7_250, | |
"DICT_7X7_1000": cv2.aruco.DICT_7X7_1000, | |
"DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL, | |
"DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5, | |
"DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9, | |
"DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10, | |
"DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11 | |
} | |
detectgray = True | |
drawaxes = True | |
if ARUCO_DICT.get(args["type"], None) is None: | |
print("[INFO] ArUCo tag of '{}' is not supported".format( | |
args["type"])) | |
sys.exit(0) | |
print("[INFO] detecting '{}' tags...".format(args["type"])) | |
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]]) | |
arucoParams = cv2.aruco.DetectorParameters_create() | |
print("[INFO] starting video stream...") | |
vs = VideoStream(src=0).start() | |
time.sleep(2.0) | |
with open('camera.json', 'r') as json_file: | |
camera_data = json.load(json_file) | |
dist = np.array(camera_data["dist"]) | |
mtx = np.array(camera_data["mtx"]) | |
frame = vs.read() | |
h, w = frame.shape[:2] | |
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (h, w), 0, (h, w)) | |
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w, h), cv2.CV_32FC1) | |
x, y, w1, h1 = roi | |
yh1 = y + h1 | |
xw1 = x + w1 | |
while True: | |
frame = vs.read() | |
dst1 = cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR) | |
frame = dst1[y:yh1, x:xw1] | |
if detectgray: | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
(corners, ids, rejected) = cv2.aruco.detectMarkers(gray, arucoDict, parameters=arucoParams) | |
else: | |
(corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams) | |
if len(corners) > 0: | |
if drawaxes: | |
for i in range(0, len(ids)): | |
rvec, tvec, markerPoints = cv2.aruco.estimatePoseSingleMarkers(corners[i], 0.02, mtx, dist) | |
cv2.drawFrameAxes(frame, mtx, dist, rvec, tvec, 0.02) | |
ids = ids.flatten() | |
cv2.aruco.drawDetectedMarkers(frame, corners, ids) | |
cv2.imshow("Frame", frame) | |
key = cv2.waitKey(1) & 0xFF | |
if key == ord("q"): | |
break | |
cv2.destroyAllWindows() | |
vs.stop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment