Created
June 14, 2017 14:10
-
-
Save jfsantos/5772cb68a6b733d266bbafc623818a67 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.autograd import Variable | |
import numpy as np | |
import pickle | |
import os | |
from glob import glob | |
from tqdm import tqdm | |
class TrainLoop(object): | |
def __init__(self, model, | |
optimizer, criterion, | |
train_fn, train_iter, | |
valid_fn, valid_iter, | |
checkpoint_path=None): | |
self.model = model | |
self.optimizer = optimizer | |
self.criterion = criterion | |
self.train_fn = train_fn | |
self.train_iter = train_iter | |
self.valid_fn = valid_fn | |
self.valid_iter = valid_iter | |
if checkpoint_path is None: | |
# Save to current directory | |
self.checkpoint_path = os.getcwd() | |
else: | |
self.checkpoint_path = checkpoint_path | |
self.history = {'train_loss': [], | |
'valid_loss': []} | |
self.total_iters = 0 | |
self.cur_epoch = 0 | |
def train(self, n_epochs=1, n_workers=1, save_every=None): | |
# Note: Logging expects the losses to be divided by the batch size | |
# Set up | |
if not os.path.isdir(self.checkpoint_path): | |
os.mkdir(self.checkpoint_path) | |
save_every_fmt = os.path.join(self.checkpoint_path, 'checkpoint_{}it.pt') | |
save_epoch_fmt = os.path.join(self.checkpoint_path, 'checkpoint_{}ep.pt') | |
for epoch in range(self.cur_epoch, n_epochs): | |
print('Epoch {}/{}'.format(epoch+1, n_epochs)) | |
train_iter = tqdm(enumerate(self.train_iter)) | |
self.history['train_loss'].append([]) | |
train_loss = self.history['train_loss'][-1] | |
for t, batch in train_iter: | |
train_loss.append(self.train_fn(self.model, | |
self.optimizer, | |
self.criterion, | |
batch)) | |
train_iter.set_postfix(loss=np.mean(train_loss)) | |
self.total_iters += 1 | |
if save_every is not None: | |
if self.total_iters % save_every == 0: | |
torch.save(self, save_every_fmt.format(self.total_iters)) | |
# Validation | |
val_loss = 0.0 | |
for t, batch in enumerate(self.valid_iter): | |
val_loss += self.valid_fn(self.model, self.criterion, batch) | |
val_loss /= t+1 | |
print('Validation loss: {}'.format(val_loss)) | |
self.history['valid_loss'].append(val_loss) | |
self.cur_epoch += 1 | |
# Checkpointing | |
print('Checkpointing...') | |
ckpt = {'model_state': self.model.state_dict(), | |
'optimizer_state': self.optimizer.state_dict(), | |
'history': self.history, | |
'total_iters': self.total_iters, | |
'cur_epoch': self.cur_epoch} | |
torch.save(ckpt, save_epoch_fmt.format(epoch)) | |
def load_checkpoint(self, ckpt): | |
ckpt = torch.load(ckpt) | |
# Load model state | |
self.model.load_state_dict(ckpt['model_state']) | |
# Load optimizer state | |
self.optimizer.load_state_dict(ckpt['optimizer_state']) | |
# Load history | |
self.history = ckpt['history'] | |
self.total_iters = ckpt['total_iters'] | |
self.cur_epoch = ckpt['cur_epoch'] | |
if __name__ == '__main__': | |
from torch.utils.data import TensorDataset, DataLoader | |
# Setup dummy model and optimizer | |
model = torch.nn.Sequential(torch.nn.Linear(10, 20), | |
torch.nn.ReLU(), | |
torch.nn.Linear(20, 10)) | |
opt = torch.optim.Adam(model.parameters()) | |
criterion = torch.nn.MSELoss() | |
train_data = TensorDataset(torch.rand(64, 10), | |
torch.rand(64, 10)) | |
valid_data = TensorDataset(torch.rand(32, 10), | |
torch.rand(32, 10)) | |
train_iter = DataLoader(train_data, 8, shuffle=True) | |
valid_iter = DataLoader(valid_data, 8) | |
def train_fn(model, optimizer, criterion, batch): | |
x, y = batch | |
x = Variable(x) | |
y = Variable(y, requires_grad=False) | |
y_hat = model.forward(x) | |
loss = criterion(y_hat, y) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
return loss.data[0] | |
def valid_fn(model, criterion, batch): | |
x, y = batch | |
x = Variable(x) | |
y = Variable(y, requires_grad=False) | |
y_hat = model.forward(x) | |
loss = criterion(y_hat, y) | |
return loss.data[0] | |
print('Testing creation of TrainLoop') | |
tl = TrainLoop(model, opt, criterion, | |
train_fn, train_iter, | |
valid_fn, valid_iter, | |
checkpoint_path='test_ckpt') | |
print('Testing tl.train') | |
tl.train(n_epochs=5) | |
print('Testing tl.load_checkpoint') | |
tl.load_checkpoint('test_ckpt/checkpoint_4ep.pt') | |
print('Testing resuming from checkpoint') | |
tl.train(n_epochs=10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment