Created
May 7, 2020 19:50
-
-
Save jgillis/595106deade2163e83172b168d240fb7 to your computer and use it in GitHub Desktop.
Custom stopping criterion
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from casadi import * | |
x=SX.sym("x") | |
y=SX.sym("y") | |
f = (1-x)**2+100*(y-x**2)**2 | |
nlp={'x':vertcat(x,y), 'f':f,'g':x+y} | |
fcn = Function('f', [x, y], [f]) | |
callback_inputs = dict() | |
for i, label in enumerate(nlpsol_out()): | |
callback_inputs[label] = i | |
class MyCallback(Callback): | |
def __init__(self,nx, ng, np): | |
Callback.__init__(self) | |
self.nx = nx | |
self.ng = ng | |
self.np = np | |
self.construct("mycallback", {}) | |
def get_n_in(self): return nlpsol_n_out() | |
def get_n_out(self): return 1 | |
def get_sparsity_in(self, i): | |
n = nlpsol_out(i) | |
if n=='f': | |
return Sparsity. scalar() | |
elif n in ('x', 'lam_x'): | |
return Sparsity.dense(self.nx) | |
elif n in ('g', 'lam_g'): | |
return Sparsity.dense(self.ng) | |
else: | |
return Sparsity(0,0) | |
def eval(self, arg): | |
objective = arg[callback_inputs["f"]] | |
if objective<1e-4: | |
# end optimization | |
return [1] | |
else: | |
return [0] | |
mycallback = MyCallback(2,1,0) | |
opts = {} | |
opts['iteration_callback'] = mycallback | |
solver = nlpsol('solver', 'ipopt', nlp, opts) | |
sol = solver(lbx=-10, ubx=10, lbg=-10, ubg=10) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment