Created
August 18, 2015 06:07
-
-
Save jgillis/7891cedd5b019683e08d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import casadi.* | |
load SilverboxSimulated | |
u_data = u; | |
y_data = y; | |
%% | |
% simulation horizon | |
N = size(u_data, 1); | |
% declare symbols for states and controls | |
y = MX.sym('y'); | |
dy = MX.sym('dy'); | |
u = MX.sym('u'); | |
% all states | |
states = [y;dy]; | |
controls = u; | |
M = optivar(); | |
c = optivar(); | |
k = optivar(); | |
k_NL = optivar(); | |
params = [M;c;k;k_NL]; | |
% Construct the right hand side | |
rhs = [dy ; (u-k_NL*y^3-k*y-c*dy)/M]; | |
% Form an ode function | |
ode = MXFunction('ode',{states,controls,params},{rhs}); | |
N_steps_per_sample = 10; | |
dt = 1/fs/N_steps_per_sample; | |
% Build an integrator for this system: Runge Kutta 4 integrator | |
k1 = ode({states,controls,params}); | |
k2 = ode({states+dt/2.0*k1{1},controls,params}); | |
k3 = ode({states+dt/2.0*k2{1},controls,params}); | |
k4 = ode({states+dt*k3{1},controls,params}); | |
states_final = states+dt/6.0*(k1{1}+2*k2{1}+2*k3{1}+k4{1}); | |
% Create a function that simulates one step propagation in a sample | |
one_step = MXFunction('one_step',{states, controls, params},{states_final}); | |
X = states; | |
for i=1:N_steps_per_sample | |
Xn = one_step({X, controls, params}); | |
X = Xn{1}; | |
end | |
% Create a function that simulates all step propagation on a sample | |
one_sample = MXFunction('one_sample',{states, controls, params}, {X}); | |
% speedup trick: expand into scalar operations | |
one_sample = one_sample.expand(); | |
% all states at every sample are decision variables | |
X = optivar(2, N); | |
params_scale = [1e-6*M;c*1e-4;k;k_NL]; | |
Xn = one_sample.map({X, u_data', params_scale}); | |
Xn = Xn{1}; | |
% gap-closing constraints | |
gaps = Xn(:,1:end-1)-X(:,2:end); | |
g = gaps == 0; | |
e = (y_data-Xn(1,:)'); | |
M.setInit(5); | |
c.setInit(2.3); | |
k.setInit(1); | |
k_NL.setInit(4); | |
X.setInit([ y_data [diff(y_data)*fs;0]]'); | |
options = struct; | |
options.codegen = true; | |
% Hand in a vector objective -> interpreted as 2-norm | |
% such that Gauss-Newton can be performed | |
optisolve(e,{g},options); | |
optival(M)*1e-6 | |
optival(c)*1e-4 | |
optival(k) | |
optival(k_NL) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment