Created
January 19, 2025 19:09
-
-
Save jgoodie/fbb6c1c860fd7fa52edd4d78426eb1a4 to your computer and use it in GitHub Desktop.
multiheaded self-attention
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import scipy | |
import numpy as np | |
from sklearn.preprocessing import OneHotEncoder | |
sentence = "the otter swam across the river to the other bank" | |
d = dict.fromkeys(sentence.split()) | |
vocab = list(d.keys()) | |
tokens = sentence.lower().split() | |
encoder = OneHotEncoder(categories=[vocab], sparse_output=False) | |
X = encoder.fit_transform(np.array(tokens).reshape(-1, 1)) | |
# Set seed so we get the same random numbers | |
np.random.seed(3) | |
# # Number of inputs and dimensions of each input | |
D, N = X.shape | |
# Number of heads | |
H = 2 | |
# QDV dimension | |
H_D = int(D/H) | |
omega_q = np.random.normal(size=(n_heads, H_D, D)) | |
omega_k = np.random.normal(size=(n_heads, H_D, D)) | |
omega_v = np.random.normal(size=(n_heads, H_D, D)) | |
beta_q = np.random.normal(size=(n_heads, H_D, 1)) | |
beta_k = np.random.normal(size=(n_heads, H_D, 1)) | |
beta_v = np.random.normal(size=(n_heads, H_D, 1)) | |
omega_c = np.random.normal(size=(D, D)) | |
def multi_head_self_attention(X, omega_q, omega_k, omega_v, omega_c, beta_q, beta_k, beta_v, n_heads): | |
# Compute attention for each head | |
head_outputs = [] | |
for h in range(n_heads): | |
q = beta_q[h] + omega_q[h]@X | |
k = beta_k[h] + omega_k[h]@X | |
v = beta_v[h] + omega_v[h]@X | |
dp = k.T@q | |
sdp = dp/np.sqrt(q.shape[0]) | |
attention_weights = scipy.special.softmax(sdp, axis=0) | |
sa = v@attention_weights | |
head_outputs.append(sa.T) | |
outputs = np.concatenate(head_outputs, axis=1).T | |
mhsa = omega_c@outputs | |
return mhsa | |
attention_output = multi_head_self_attention(X, omega_q, omega_k, omega_v, omega_c, beta_q, beta_k, beta_v, H) | |
print(f"X shape: {X.shape}") | |
print(f"Multi-Headed Attention shape: {attention_output.shape}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment