Created
September 1, 2022 08:14
-
-
Save jhrmnn/86f0b061a9933c271dceab121dfdb0a0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
__all__ = () | |
@torch.no_grad() | |
def solve_lap(C): | |
assert len(C.shape) == 3 | |
assert C.shape[2] >= C.shape[1] | |
assert (C >= 0).all() | |
# step 1, initialize | |
bs, NR, NC = C.shape | |
u, v = (C.new_zeros(bs, n) for n in (NR, NC)) | |
curRow = C.new_zeros(len(C), dtype=torch.long) | |
col4row, row4col = (C.new_full((bs, n), -1, dtype=torch.long) for n in (NR, NC)) | |
path = C.new_empty(bs, NC, dtype=torch.long) | |
_ib = torch.arange(bs, device=C.device) | |
_inf = C.new_tensor(torch.inf) | |
for _ in range(NR): | |
# step 2, prepare for augmentation | |
shortestPathCosts = C.new_full((bs, NC), torch.inf) | |
SR, SC = (C.new_zeros(bs, n, dtype=torch.bool) for n in (NR, NC)) | |
sink = C.new_full((bs,), -1, dtype=torch.long) | |
minVal = C.new_zeros(bs) | |
i = curRow.clone() | |
# step 3, find the shortest augmenting path | |
while True: | |
_bx = sink == -1 | |
if not _bx.any(): | |
break | |
SR[_ib[_bx], i[_bx]] = True | |
_SC = SC[_bx] | |
expand = lambda x: x[:, None].expand_as(_SC) | |
path_costs = ( | |
expand(minVal[_bx])[~_SC] | |
+ C[_ib[_bx], i[_bx]][~_SC] | |
- expand(u[_ib[_bx], i[_bx]])[~_SC] | |
- v[_bx][~_SC] | |
) | |
_jx = path_costs < shortestPathCosts[_bx][~_SC] | |
shortestPathCosts.masked_scatter_( | |
_bx[:, None] & ~SC, | |
torch.where(_jx, path_costs, shortestPathCosts[_bx][~_SC]), | |
) | |
path.masked_scatter_( | |
_bx[:, None] & ~SC, | |
torch.where(_jx, expand(i[_bx])[~_SC], path[_bx][~_SC]), | |
) | |
j = shortestPathCosts[_bx].where(~_SC, _inf).min(dim=-1).indices | |
assert (shortestPathCosts[_ib[_bx], j] < _inf).all() | |
SC[_ib[_bx], j] = True | |
minVal[_bx] = shortestPathCosts[_ib[_bx], j] | |
sink.masked_scatter_( | |
_bx, torch.where(row4col[_ib[_bx], j] == -1, j, sink[_bx]) | |
) | |
i[_bx] = row4col[_ib[_bx], j] | |
# step 4, update the dual variables | |
u[_ib, curRow] += minVal | |
SR[_ib, curRow] = False | |
u[SR] += ( | |
minVal[:, None].expand_as(u)[SR] | |
- shortestPathCosts[_ib[:, None].expand_as(u)[SR], col4row[SR]] | |
) | |
_i, _j = SC.nonzero().t() | |
v[SC] += -minVal[:, None].expand_as(v)[SC] + shortestPathCosts[SC] | |
# step 5, augment the previous solution | |
j = sink | |
_bx = C.new_ones(bs, dtype=torch.bool) | |
while True: | |
i = path[_ib[_bx], j] | |
row4col[_ib[_bx], j] = i | |
temp = col4row[_ib[_bx], i] | |
col4row[_ib[_bx], i] = j | |
_bx_temp = _bx.clone() | |
_bx[_bx_temp] = i != curRow[_bx] | |
if not _bx.any(): | |
break | |
j = temp[_bx[_bx_temp]] | |
# step 6, loop | |
curRow += 1 | |
return torch.arange(bs)[:, None].expand_as(col4row), col4row |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment