Created
August 28, 2016 15:00
-
-
Save jia-kai/a226b6c05fb19c71663b4de261f41c83 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# $File: cart.py | |
# $Date: Sun Aug 28 23:00:26 2016 +0800 | |
# $Author: jiakai <[email protected]> | |
import gym | |
import numpy as np | |
import operator | |
import itertools | |
class CrossEntropySolver: | |
pool_size = 10 | |
selection_ratio = 0.3 | |
w_size = 4 | |
max_steps_per_sample = 3000 | |
_env = None | |
_episode = 0 | |
_cur_mean = None | |
_cur_std = None | |
_best_core = -1 | |
best_w = None | |
def __init__(self, env): | |
self._env = env | |
self._cur_mean = np.random.normal(size=self.w_size) | |
self._cur_std = np.ones(self.w_size) | |
def get_action(self, obsrv, w): | |
return int(np.dot(obsrv, w) > 0) | |
def eval(self, w, verbose=False): | |
env = self._env | |
obsrv = env.reset() | |
tot_reward = 0 | |
if verbose: | |
rng = itertools.count() | |
else: | |
rng = range(self.max_steps_per_sample) | |
for i in rng: | |
if verbose: | |
print(i, end='\r', flush=True) | |
env.render() | |
action = self.get_action(obsrv, w) | |
obsrv, reward, done, info = env.step(action) | |
tot_reward += reward | |
if done: | |
break | |
tot_reward = float(tot_reward) | |
if tot_reward > self._best_core: | |
self._best_core = tot_reward | |
self.best_w = w | |
return tot_reward | |
def sample(self): | |
return (np.random.normal(size=self.w_size) * self._cur_std + | |
self._cur_mean) | |
def train_episode(self): | |
env = self._env | |
cand = [] | |
for i in range(self.pool_size): | |
w = self.sample() | |
cand.append((np.mean(list(map(self.eval, [w]*3))), w)) | |
print('{}:{} ...'.format(self._episode, i), end='\r', flush=True) | |
nr_sel = int(self.selection_ratio * len(cand)) | |
cand = sorted(cand, key=operator.itemgetter(0))[-nr_sel:] | |
ws = np.array([i[1] for i in cand]) | |
self._cur_mean = np.mean(ws, axis=0) | |
self._cur_std = np.std(ws, axis=0, ddof=1) + 1.5 / (self._episode + 1) | |
avg_score = float(np.mean([i[0] for i in cand])) | |
print('episode {}: score={}'.format(self._episode, avg_score)) | |
self._episode += 1 | |
return avg_score | |
def main(): | |
monitor = True | |
env = gym.make('CartPole-v0') | |
if monitor: | |
env.monitor.start( | |
'expr0', | |
video_callable=lambda x: x%(CrossEntropySolver.pool_size*5) == 0) | |
ce = CrossEntropySolver(env) | |
for i in range(20): | |
if ce.train_episode() == ce.max_steps_per_sample: | |
break | |
if monitor: | |
env.monitor.close() | |
print('eval:', ce.eval(ce.best_w, True)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment