Last active
December 5, 2018 14:43
-
-
Save jiewpeng/87b739616deeb2b4904883cfeca3abd4 to your computer and use it in GitHub Desktop.
Keras Model within Estimator Function
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import tensorflow_hub as hub | |
import numpy as np | |
import shutil | |
def create_model(max_seq_len, embedding_size): | |
model = tf.keras.Sequential() | |
model.add(tf.keras.layers.Dropout(0.5, input_shape=(max_seq_len, embedding_size))) | |
model.add(tf.keras.layers.SeparableConv1D(8, 3, padding='same', activation=tf.nn.leaky_relu)) | |
model.add(tf.keras.layers.GlobalAveragePooling1D()) | |
model.add(tf.keras.layers.Dense(2, activation='softmax')) | |
return model | |
def pad_seq(text, max_seq_len): | |
reshaped_input = tf.reshape(text, [-1]) | |
split = tf.strings.split(reshaped_input) | |
split = tf.sparse.to_dense(split, default_value='') | |
seq_len = tf.shape(split)[1] | |
batch_size = tf.shape(split)[0] | |
split = tf.cond( | |
seq_len < max_seq_len, | |
lambda: tf.pad(split, [[0, 0], [0, max_seq_len - seq_len]], constant_values=''), | |
lambda: tf.slice(split, [0, 0], [batch_size, max_seq_len]) | |
) | |
return split | |
def model_fn(features, labels, mode, params): | |
"""The model_fn argument for creating an Estimator.""" | |
tfhub_url = params.get('tfhub_url', 'https://tfhub.dev/google/nnlm-en-dim128/1') | |
embedding_trainable = params.get('embedding_trainable', False) | |
max_seq_len = params.get('max_seq_len', 5) | |
embedding_size_dict = { | |
'https://tfhub.dev/google/nnlm-en-dim128/1': 128, | |
'https://tfhub.dev/google/Wiki-words-250/1': 250, | |
} | |
model = create_model(max_seq_len, embedding_size_dict[tfhub_url]) | |
embed = hub.Module(tfhub_url, trainable=embedding_trainable) | |
text = features | |
if isinstance(text, dict): | |
text = text['text'] | |
text_seq = pad_seq(text, max_seq_len) | |
embeddings = tf.map_fn(embed, text_seq, dtype=tf.float32) | |
if mode == tf.estimator.ModeKeys.PREDICT: | |
logits = model(embeddings, training=False) | |
predictions = { | |
'classes': tf.argmax(logits, axis=1), | |
'probabilities': tf.nn.softmax(logits), | |
} | |
return tf.estimator.EstimatorSpec( | |
mode=tf.estimator.ModeKeys.PREDICT, | |
predictions=predictions, | |
export_outputs={ | |
'predict': tf.estimator.export.PredictOutput(predictions) | |
}) | |
if mode == tf.estimator.ModeKeys.TRAIN: | |
optimizer = tf.train.AdamOptimizer(learning_rate=0.001) | |
# If we are running multi-GPU, we need to wrap the optimizer. | |
if params.get('multi_gpu'): | |
optimizer = tf.contrib.estimator.TowerOptimizer(optimizer) | |
logits = model(embeddings, training=True) | |
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) | |
accuracy = tf.metrics.accuracy( | |
labels=labels, predictions=tf.argmax(logits, axis=1)) | |
# Name tensors to be logged with LoggingTensorHook. | |
tf.identity(loss, 'cross_entropy') | |
tf.identity(accuracy[1], name='train_accuracy') | |
# Save accuracy scalar to Tensorboard output. | |
tf.summary.scalar('train_accuracy', accuracy[1]) | |
return tf.estimator.EstimatorSpec( | |
mode=tf.estimator.ModeKeys.TRAIN, | |
loss=loss, | |
train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step())) | |
if mode == tf.estimator.ModeKeys.EVAL: | |
logits = model(image, training=False) | |
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) | |
return tf.estimator.EstimatorSpec( | |
mode=tf.estimator.ModeKeys.EVAL, | |
loss=loss, | |
eval_metric_ops={ | |
'accuracy': | |
tf.metrics.accuracy( | |
labels=labels, predictions=tf.argmax(logits, axis=1)), | |
}) | |
estimator = tf.estimator.Estimator(model_fn, model_dir='./model_trained') | |
x = np.array(['the quick brown fox', 'jumps over a lazy dog']) | |
y = np.array([0, 1]) | |
input_fn = tf.estimator.inputs.numpy_input_fn({'text': x}, y=y, shuffle=False) | |
shutil.rmtree('./model_trained', ignore_errors=True) | |
estimator.train(input_fn, steps=10) | |
for pred in estimator.predict(input_fn): | |
print(pred) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment