Created
October 25, 2011 00:32
-
-
Save jiffyclub/1310942 to your computer and use it in GitHub Desktop.
Collapse 2-D array into one dimension.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
# Uses MEANCLIP from above | |
from meanclip import meanclip | |
def mytotal(inarray, axis, type='meanclip'): | |
""" | |
Collapse 2-D array in one dimension. | |
.. note:: MYTOTAL routine from ACS library. | |
:History: | |
* Obtained from M. Sirianni. | |
* Modified and converted to Python by P. L. Lim in 2009. | |
Examples | |
-------- | |
>>> collapsed_array = mytotal(inarray, 1, type='median') | |
Parameters | |
---------- | |
inarray: array_like | |
Input 2-D array. | |
axis: {1, 2} | |
Axis to collapse. | |
* 1: Return values along Y. | |
* 2: Return values along X. | |
type: {'median', 'meanclip', 'stdev'} | |
Algorithm to use. | |
Returns | |
------- | |
out_arr: array_like | |
1-D array collapsed along desired axis with desired | |
algorithm. | |
""" | |
func_name = 'MYTOTAL' | |
out_arr = 0.0 | |
# Check inarray | |
if inarray.ndim != 2: | |
print '%s: Input array must be 2D' % func_name | |
return out_arr | |
# Check axis | |
if axis == 1: | |
n_out = inarray.shape[0] | |
elif axis == 2: | |
n_out = inarray.shape[1] | |
else: | |
print func_name, ': Axis not supported -', axis | |
return out_arr | |
# Initialize output array | |
out_arr = numpy.zeros(n_out) | |
out_rng = range(0, n_out) | |
# Check type | |
if type == 'meanclip': | |
for i in out_rng: | |
if axis == 1: | |
im_i = inarray[i,:] | |
else: | |
im_i = inarray[:,i] | |
mmean, msigma = meanclip(im_i, maxiter=10, converge_num=0.001) | |
out_arr[i] = mmean | |
elif type == 'stdev': | |
for i in out_rng: | |
if axis == 1: | |
im_i = inarray[i,:] | |
else: | |
im_i = inarray[:,i] | |
mmean, msigma = meanclip(im_i, maxiter=10, converge_num=0.001) | |
out_arr[i] = msigma | |
elif type == 'median': | |
for i in out_rng: | |
if axis == 1: | |
im_i = inarray[i,:] | |
else: | |
im_i = inarray[:,i] | |
out_arr[i] = numpy.median(im_i) | |
else: | |
print func_name, ': Type not supported -', type | |
out_arr = 0.0 | |
return out_arr |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment