Created
April 10, 2018 12:07
-
-
Save jihaonew/292920dccfea859ebcdd95c2647d1162 to your computer and use it in GitHub Desktop.
Read image from tfrecord using TensorFlow.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import utils | |
class Reader(): | |
def __init__(self, tfrecords_file, image_size=256, | |
min_queue_examples=1000, batch_size=1, num_threads=8, name=''): | |
""" | |
Args: | |
tfrecords_file: string, tfrecords file path | |
min_queue_examples: integer, minimum number of samples to retain in the queue that provides of batches of examples | |
batch_size: integer, number of images per batch | |
num_threads: integer, number of preprocess threads | |
""" | |
self.tfrecords_file = tfrecords_file | |
self.image_size = image_size | |
self.min_queue_examples = min_queue_examples | |
self.batch_size = batch_size | |
self.num_threads = num_threads | |
self.reader = tf.TFRecordReader() | |
self.name = name | |
def feed(self): | |
""" | |
Returns: | |
images: 4D tensor [batch_size, image_width, image_height, image_depth] | |
""" | |
with tf.name_scope(self.name): | |
filename_queue = tf.train.string_input_producer([self.tfrecords_file]) | |
reader = tf.TFRecordReader() | |
_, serialized_example = self.reader.read(filename_queue) | |
features = tf.parse_single_example( | |
serialized_example, | |
features={ | |
'image/file_name': tf.FixedLenFeature([], tf.string), | |
'image/encoded_image': tf.FixedLenFeature([], tf.string), | |
}) | |
image_buffer = features['image/encoded_image'] | |
image = tf.image.decode_jpeg(image_buffer, channels=3) | |
image = self._preprocess(image) | |
images = tf.train.shuffle_batch( | |
[image], batch_size=self.batch_size, num_threads=self.num_threads, | |
capacity=self.min_queue_examples + 3*self.batch_size, | |
min_after_dequeue=self.min_queue_examples | |
) | |
tf.summary.image('_input', images) | |
return images | |
def _preprocess(self, image): | |
image = tf.image.resize_images(image, size=(self.image_size, self.image_size)) | |
image = utils.convert2float(image) | |
image.set_shape([self.image_size, self.image_size, 3]) | |
return image | |
def test_reader(): | |
TRAIN_FILE_1 = 'data/tfrecords/apple.tfrecords' | |
TRAIN_FILE_2 = 'data/tfrecords/orange.tfrecords' | |
with tf.Graph().as_default(): | |
reader1 = Reader(TRAIN_FILE_1, batch_size=2) | |
reader2 = Reader(TRAIN_FILE_2, batch_size=2) | |
images_op1 = reader1.feed() | |
images_op2 = reader2.feed() | |
sess = tf.Session() | |
init = tf.global_variables_initializer() | |
sess.run(init) | |
coord = tf.train.Coordinator() | |
threads = tf.train.start_queue_runners(sess=sess, coord=coord) | |
try: | |
step = 0 | |
while not coord.should_stop(): | |
batch_images1, batch_images2 = sess.run([images_op1, images_op2]) | |
print("image shape: {}".format(batch_images1)) | |
print("image shape: {}".format(batch_images2)) | |
print("="*10) | |
step += 1 | |
except KeyboardInterrupt: | |
print('Interrupted') | |
coord.request_stop() | |
except Exception as e: | |
coord.request_stop(e) | |
finally: | |
# When done, ask the threads to stop. | |
coord.request_stop() | |
coord.join(threads) | |
if __name__ == '__main__': | |
test_reader() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment