Created
September 13, 2015 16:13
-
-
Save jimgoo/b5f373763183e5459151 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import print_function | |
from keras.datasets import cifar10 | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Sequential | |
from keras.layers.core import Dense, Dropout, Activation, Flatten | |
from keras.layers.convolutional import Convolution2D, MaxPooling2D | |
from keras.optimizers import SGD, Adadelta, Adagrad | |
from keras.utils import np_utils, generic_utils | |
from six.moves import range | |
## Download the file for buffered generators | |
import os | |
if not os.path.exists('buffering.py'): | |
print('Downloading buffering.py') | |
os.system('wget https://raw.githubusercontent.com/benanne/kaggle-ndsb/11a66cdbddee16c69514b9530a727df0ac6e136f/buffering.py') | |
from buffering import buffered_gen_mp, buffered_gen_threaded | |
''' | |
Train a (fairly simple) deep CNN on the CIFAR10 small images dataset. | |
GPU run command: | |
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cifar10_cnn.py | |
It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs. | |
(it's still underfitting at that point, though). | |
Note: the data was pickled with Python 2, and some encoding issues might prevent you | |
from loading it in Python 3. You might have to load it in Python 2, | |
save it in a different format, load it in Python 3 and repickle it. | |
''' | |
batch_size = 32 | |
nb_classes = 10 | |
nb_epoch = 200 | |
data_augmentation = True | |
# the data, shuffled and split between tran and test sets | |
(X_train, y_train), (X_test, y_test) = cifar10.load_data() | |
print('X_train shape:', X_train.shape) | |
print(X_train.shape[0], 'train samples') | |
print(X_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
Y_train = np_utils.to_categorical(y_train, nb_classes) | |
Y_test = np_utils.to_categorical(y_test, nb_classes) | |
model = Sequential() | |
model.add(Convolution2D(32, 3, 3, 3, border_mode='full')) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(32, 32, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(poolsize=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Convolution2D(64, 32, 3, 3, border_mode='full')) | |
model.add(Activation('relu')) | |
model.add(Convolution2D(64, 64, 3, 3)) | |
model.add(Activation('relu')) | |
model.add(MaxPooling2D(poolsize=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(64*8*8, 512)) | |
model.add(Activation('relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(512, nb_classes)) | |
model.add(Activation('softmax')) | |
# let's train the model using SGD + momentum (how original). | |
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) | |
model.compile(loss='categorical_crossentropy', optimizer=sgd) | |
if not data_augmentation: | |
print("Not using data augmentation or normalization") | |
X_train = X_train.astype("float32") | |
X_test = X_test.astype("float32") | |
X_train /= 255 | |
X_test /= 255 | |
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch) | |
score = model.evaluate(X_test, Y_test, batch_size=batch_size) | |
print('Test score:', score) | |
else: | |
buffer_size = 2 | |
print("Using real time data augmentation with buffer_size = %i" % buffer_size) | |
# this will do preprocessing and realtime data augmentation | |
datagen = ImageDataGenerator( | |
featurewise_center=True, # set input mean to 0 over the dataset | |
samplewise_center=False, # set each sample mean to 0 | |
featurewise_std_normalization=True, # divide inputs by std of the dataset | |
samplewise_std_normalization=False, # divide each input by its std | |
zca_whitening=False, # apply ZCA whitening | |
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180) | |
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width) | |
height_shift_range=0.2, # randomly shift images vertically (fraction of total height) | |
horizontal_flip=True, # randomly flip images | |
vertical_flip=False) # randomly flip images | |
# compute quantities required for featurewise normalization | |
# (std, mean, and principal components if ZCA whitening is applied) | |
datagen.fit(X_train) | |
for e in range(nb_epoch): | |
print('-'*40) | |
print('Epoch', e) | |
print('-'*40) | |
print("Training...") | |
# batch train with realtime data augmentation | |
progbar = generic_utils.Progbar(X_train.shape[0]) | |
for X_batch, Y_batch in buffered_gen_threaded(datagen.flow(X_train, Y_train), buffer_size=buffer_size): | |
loss = model.train_on_batch(X_batch, Y_batch) | |
progbar.add(X_batch.shape[0], values=[("train loss", loss)]) | |
print("Testing...") | |
# test time! | |
progbar = generic_utils.Progbar(X_test.shape[0]) | |
for X_batch, Y_batch in buffered_gen_threaded(datagen.flow(X_test, Y_test), buffer_size=buffer_size): | |
score = model.test_on_batch(X_batch, Y_batch) | |
progbar.add(X_batch.shape[0], values=[("test loss", score)]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment