Last active
August 14, 2024 02:45
-
-
Save jimkring/32885d8fad3991dbc7069202cdb0b217 to your computer and use it in GitHub Desktop.
Create a Pydantic model from JSON Schema dynamically at runtime
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tempfile | |
import json | |
from pathlib import Path | |
from typing import Any, Dict, Type | |
import datamodel_code_generator | |
from pydantic import BaseModel | |
def json_schema_to_pydantic_model(json_schema: Dict[str, Any]) -> Type[BaseModel]: | |
"""Generate a Pydantic model from a JSON schema in memory.""" | |
# Create temporary files for input and output | |
with tempfile.NamedTemporaryFile( | |
mode="w+", suffix=".json", delete=False | |
) as input_file, tempfile.NamedTemporaryFile(mode="w+", suffix=".py", delete=False) as output_file: | |
# Write the JSON schema to the input file | |
input_file.write(json.dumps(json_schema)) | |
input_file.flush() | |
# Generate the model code | |
datamodel_code_generator.generate( | |
input_=Path(input_file.name), | |
input_file_type=datamodel_code_generator.InputFileType.JsonSchema, | |
output=Path(output_file.name), | |
target_python_version=datamodel_code_generator.PythonVersion.PY_312, | |
allow_population_by_field_name=True, # causes json title's to be used as field aliases | |
) | |
# Read the generated code | |
output_file.seek(0) | |
generated_code = output_file.read() | |
print(f"Generated code:\n\n{generated_code}") | |
# Clean up temporary files | |
Path(input_file.name).unlink() | |
Path(output_file.name).unlink() | |
# Create a namespace to execute the code in | |
namespace = {} | |
# Execute the generated code in the namespace | |
exec(generated_code, namespace) | |
# Convert the model name to a valid Python class name | |
schema_root_item_name = json_schema["title"] | |
model_name = datamodel_code_generator.parser.base.title_to_class_name(schema_root_item_name) | |
model = namespace[model_name] | |
assert issubclass(model, BaseModel) | |
return model | |
if __name__ == "__main__": | |
# todo: add a test case | |
# Example usage | |
json_schema = """ | |
{ | |
"title": "person", | |
"type": "object", | |
"properties": { | |
"name": {"type": "string"}, | |
"age": {"type": "integer"}, | |
"pets": { | |
"type": "array", | |
"items": { | |
"type": "object", | |
"properties": { | |
"name": {"type": "string"}, | |
"species": {"type": "string"} | |
}, | |
"required": ["name", "species"], | |
"additionalProperties": true | |
} | |
} | |
}, | |
"required": ["name", "age"], | |
"additionalProperties": false | |
} | |
""" | |
PersonModel = json_schema_to_pydantic_model( | |
json_schema=json.loads(json_schema), | |
) | |
print(f"Generated model: {PersonModel}") | |
print(f"Model schema:\n\n{json.dumps(PersonModel.model_json_schema(), indent=2)}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment