Last active
December 8, 2020 03:20
-
-
Save jimmy15923/2f5933156a2a92de0258cd6145bbb3c1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
import torch.nn.functional as F | |
class _NonLocalBlockND(nn.Module): | |
def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True): | |
super(_NonLocalBlockND, self).__init__() | |
assert dimension in [1, 2, 3] | |
self.dimension = dimension | |
self.sub_sample = sub_sample | |
self.in_channels = in_channels | |
self.inter_channels = inter_channels | |
if self.inter_channels is None: | |
self.inter_channels = in_channels // 2 | |
if self.inter_channels == 0: | |
self.inter_channels = 1 | |
if dimension == 3: | |
conv_nd = nn.Conv3d | |
max_pool_layer = nn.MaxPool3d(kernel_size=(1, 2, 2)) | |
bn = nn.BatchNorm3d | |
elif dimension == 2: | |
conv_nd = nn.Conv2d | |
max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) | |
bn = nn.BatchNorm2d | |
else: | |
conv_nd = nn.Conv1d | |
max_pool_layer = nn.MaxPool1d(kernel_size=(2)) | |
bn = nn.BatchNorm1d | |
self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, | |
kernel_size=1, stride=1, padding=0) | |
if bn_layer: | |
self.W = nn.Sequential( | |
conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, | |
kernel_size=1, stride=1, padding=0), | |
bn(self.in_channels) | |
) | |
nn.init.constant_(self.W[1].weight, 0) | |
nn.init.constant_(self.W[1].bias, 0) | |
else: | |
self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, | |
kernel_size=1, stride=1, padding=0) | |
nn.init.constant_(self.W.weight, 0) | |
nn.init.constant_(self.W.bias, 0) | |
self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, | |
kernel_size=1, stride=1, padding=0) | |
self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, | |
kernel_size=1, stride=1, padding=0) | |
if sub_sample: | |
self.g = nn.Sequential(self.g, max_pool_layer) | |
self.phi = nn.Sequential(self.phi, max_pool_layer) | |
def forward(self, x): | |
''' | |
:param x: (b, c, t, h, w) | |
:return: | |
''' | |
batch_size = x.size(0) | |
g_x = self.g(x).view(batch_size, self.inter_channels, -1) | |
g_x = g_x.permute(0, 2, 1) | |
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1) | |
theta_x = theta_x.permute(0, 2, 1) | |
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1) | |
f = torch.matmul(theta_x, phi_x) | |
f_div_C = F.softmax(f, dim=-1) | |
y = torch.matmul(f_div_C, g_x) | |
y = y.permute(0, 2, 1).contiguous() | |
y = y.view(batch_size, self.inter_channels, *x.size()[2:]) | |
W_y = self.W(y) | |
z = W_y + x | |
return z | |
class NONLocalBlock1D_mutual(_NonLocalBlockND): | |
def __init__(self, in_channels, inter_channels=None, sub_sample=False, bn_layer=True): | |
super(NONLocalBlock1D_mutual, self).__init__(in_channels, | |
inter_channels=inter_channels, | |
dimension=1, sub_sample=sub_sample, | |
bn_layer=bn_layer) | |
if bn_layer: | |
self.W = nn.Sequential( | |
nn.Conv1d(in_channels=self.inter_channels*2, out_channels=self.in_channels, | |
kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(self.in_channels) | |
) | |
nn.init.constant_(self.W[1].weight, 0) | |
nn.init.constant_(self.W[1].bias, 0) | |
else: | |
self.W = nn.Conv1d(in_channels=self.inter_channels*2, out_channels=self.in_channels, | |
kernel_size=1, stride=1, padding=0) | |
nn.init.constant_(self.W.weight, 0) | |
nn.init.constant_(self.W.bias, 0) | |
def forward(self, x): | |
''' | |
:param x: (b, c, t, h, w) | |
:return: | |
''' | |
batch_size = x.size(0) | |
n_point = x.size(2) | |
data_1 = x[0:1] # Serve as key | |
g_x = self.g(x).view(batch_size, self.inter_channels, -1) | |
g_x = g_x.permute(0, 2, 1) | |
theta_x = self.theta(data_1).view(1, self.inter_channels, -1) | |
theta_x = theta_x.permute(0, 2, 1) | |
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1) | |
f = torch.matmul(theta_x, phi_x) | |
f_div_C = F.softmax(f, dim=-1) | |
fg_attention = torch.mean(f_div_C, dim=1)[:,:,None].repeat(1, 1, self.inter_channels) | |
bg_attention = 1 - fg_attention | |
fg_attention_features = torch.mul(fg_attention, g_x) | |
bg_attention_features = torch.mul(bg_attention, g_x) | |
y = torch.cat([fg_attention_features, bg_attention_features], dim=2) | |
y = y.permute(0, 2, 1).contiguous() | |
W_y = self.W(y) | |
z = W_y + x | |
return z | |
if __name__ == '__main__': | |
img = torch.zeros(2, 3, 20) | |
net = NONLocalBlock1D_mutual(3, sub_sample=False, bn_layer=True) | |
out = net(img) | |
print(out.size()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment