Last active
January 18, 2019 07:21
-
-
Save jimmy15923/9811f0d8f8f8a188e4a7e1628560dcd5 to your computer and use it in GitHub Desktop.
keras code for IBM LMS testing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
import os | |
# FLAGS | |
tf.logging.set_verbosity(tf.logging.INFO) | |
FLAGS = tf.app.flags.FLAGS | |
tf.app.flags.DEFINE_string('f', '', 'kernel') | |
tf.app.flags.DEFINE_string("gpu_id", "0", "idx of GPU using") | |
tf.app.flags.DEFINE_integer("batch_size", 512, "Batch size") | |
tf.app.flags.DEFINE_integer("image_size", 224, "Image size") | |
tf.app.flags.DEFINE_float("cuda_memory", 1, "pre-alloctaed of CUDA unified memory") | |
tf.app.flags.DEFINE_bool("use_lms", False, "Use IBM Large Model Support") | |
# set gpu | |
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu_id | |
# synthetic data | |
x = np.random.randint(0, 1, size=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3)) | |
y = np.random.randint(0, 1000, size=FLAGS.batch_size) | |
y = tf.keras.utils.to_categorical(y, 1000) | |
if FLAGS.use_lms: | |
from tensorflow.contrib.lms import LMSKerasCallback | |
lms_callback = LMSKerasCallback() | |
print("USING LARGE MODEL SUPPORT") | |
# build model & train | |
model = tf.keras.applications.resnet50.ResNet50(input_shape=(FLAGS.image_size, FLAGS.image_size, 3), weights=None) | |
model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam()) | |
res = model.fit(x, y, batch_size=FLAGS.batch_size, epochs=10, callbacks=[lms_callback]) | |
elif FLAGS.cuda_memory > 1: | |
config = tf.ConfigProto() | |
config.gpu_options.per_process_gpu_memory_fraction = FLAGS.cuda_memory | |
session = tf.Session(config=config) | |
print("USING CUDA UNIFIED MEMORY") | |
tf.keras.backend.set_session(session) | |
# build model & train | |
model = tf.keras.applications.resnet50.ResNet50(input_shape=(FLAGS.image_size, FLAGS.image_size, 3), weights=None) | |
model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam()) | |
res = model.fit(x, y, batch_size=FLAGS.batch_size, epochs=10) | |
else: | |
# build model & train | |
model = tf.keras.applications.resnet50.ResNet50(input_shape=(FLAGS.image_size, FLAGS.image_size, 3), weights=None) | |
model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam()) | |
res = model.fit(x, y, batch_size=FLAGS.batch_size, epochs=10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment