Last active
February 11, 2019 06:25
-
-
Save jimmy15923/aad522dd0fa57965215796bda942d46f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def grad_cam(img, model): | |
"""Gradient Activation Map for keras model | |
# Arguments | |
img: image to plot gradcam | |
model: keras model | |
# Returns | |
gradcam image | |
""" | |
img = np.expand_dims(img, 0) | |
last_conv_layer = model.get_layer('leaky_re_lu_17').output # setup the correct name for last conv layer | |
grads = K.gradients(model.get_layer('dense_1').output[:,1], last_conv_layer)[0] | |
pooled_grads = K.mean(grads, axis=(0, 1, 2)) | |
out = model.output[:,1] | |
iterate = K.function([model.get_layer("input_1").input], | |
[pooled_grads, last_conv_layer[0], out]) | |
pooled_grads_value, conv_layer_output_value, output = iterate([img]) | |
# 2048 for ResNet-50, since the shape of feature maps is (NoneX?x?x2048) | |
for i in range(2048): | |
conv_layer_output_value[:,:,:,i] *= pooled_grads_value[i] | |
gradcam = np.mean(conv_layer_output_value, axis=-1) | |
gradcam = np.maximum(gradcam, 0) | |
gradcam /= np.max(gradcam) | |
import skimage | |
import scipy | |
cam = scipy.ndimage.zoom(gradcam, 16, mode="nearest") | |
gradcams.append(cam) | |
print(x, output) | |
return gradcams |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment