Created
May 17, 2024 05:51
-
-
Save jimwhite/0ce6e6927858acb4d28555941f73c465 to your computer and use it in GitHub Desktop.
Notation List for Cambridge International Mathematics Qualifications (For use from 2020) converted by GPT-4o to HTML and MathJax
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<title>Mathematical Notation</title> | |
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> | |
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> | |
</head> | |
<body> | |
<h1>Notation List for Cambridge International Mathematics Qualifications</h1> | |
<h2>1. Set notation</h2> | |
<ul> | |
<li>\(\in\) is an element of</li> | |
<li>\(\notin\) is not an element of</li> | |
<li>\(\{x_1, x_2, \ldots\}\) the set with elements \(x_1, x_2, \ldots\)</li> | |
<li>\(\{x : \ldots\}\) the set of all \(x\) such that \(\ldots\)</li> | |
<li>\(n(A)\) the number of elements in set \(A\)</li> | |
<li>\(\emptyset\) the empty set</li> | |
<li>\(U\) the universal set</li> | |
<li>\(A'\) the complement of the set \(A\)</li> | |
<li>\(\mathbb{N}\) the set of natural numbers, \(\{1, 2, 3, \ldots\}\)</li> | |
<li>\(\mathbb{Z}\) the set of integers, \(\{0, \pm1, \pm2, \pm3, \ldots\}\)</li> | |
<li>\(\mathbb{Q}\) the set of rational numbers, \(\left\{ \frac{p}{q} \middle| p \in \mathbb{Z}, q \neq 0 \right\}\)</li> | |
<li>\(\mathbb{R}\) the set of real numbers</li> | |
<li>\(\mathbb{C}\) the set of complex numbers</li> | |
<li>\((x, y)\) the ordered pair \(x, y\)</li> | |
<li>\(\subseteq\) is a subset of</li> | |
<li>\(\subset\) is a proper subset of</li> | |
<li>\(\cup\) union</li> | |
<li>\(\cap\) intersection</li> | |
<li>\([a, b]\) the closed interval \(\{x \in \mathbb{R} : a \leq x \leq b\}\)</li> | |
<li>\([a, b)\) the interval \(\{x \in \mathbb{R} : a \leq x < b\}\)</li> | |
<li>\((a, b]\) the interval \(\{x \in \mathbb{R} : a < x \leq b\}\)</li> | |
<li>\((a, b)\) the open interval \(\{x \in \mathbb{R} : a < x < b\}\)</li> | |
<li>\((S, \circ)\) the group consisting of the set \(S\) with binary operation \(\circ\)</li> | |
</ul> | |
<h2>2. Miscellaneous symbols</h2> | |
<ul> | |
<li>= is equal to</li> | |
<li>≠ is not equal to</li> | |
<li>≡ is identical to or is congruent to</li> | |
<li>≈ is approximately equal to</li> | |
<li>~ is distributed as</li> | |
<li>≅ is isomorphic to</li> | |
<li>∝ is proportional to</li> | |
<li>< is less than</li> | |
<li>≤ is less than or equal to</li> | |
<li>> is greater than</li> | |
<li>≥ is greater than or equal to</li> | |
<li>∞ infinity</li> | |
<li>⇒ implies</li> | |
<li>⇐ is implied by</li> | |
<li>⇔ implies and is implied by (is equivalent to)</li> | |
</ul> | |
<h2>3. Operations</h2> | |
<ul> | |
<li>\(a + b\) \(a\) plus \(b\)</li> | |
<li>\(a - b\) \(a\) minus \(b\)</li> | |
<li>\(a \times b, ab\) \(a\) multiplied by \(b\)</li> | |
<li>\(\frac{a}{b}, \frac{a}{b}\) \(a\) divided by \(b\)</li> | |
<li>\(\sum_{i=1}^n a_i\) \(a_1 + a_2 + \ldots + a_n\)</li> | |
<li>\(\sqrt{a}\) the non-negative square root of \(a\), for \(a \in \mathbb{R}, a \geq 0\)</li> | |
<li>\(\sqrt[n]{a}\) the (real) \(n\)th root of \(a\), for \(a \in \mathbb{R}\), where \(n\) is an integer and \(a \geq 0\)</li> | |
<li>\(|a|\) the modulus of \(a\)</li> | |
<li>\(n!\) \(n\) factorial</li> | |
<li>\(\binom{n}{r}\) the binomial coefficient \(\frac{n!}{r!(n-r)!}\) for \(n, r \in \mathbb{Z}\) and \(0 \leq r \leq n\)</li> | |
</ul> | |
<h2>4. Functions</h2> | |
<ul> | |
<li>\(f(x)\) the value of the function \(f\) at \(x\)</li> | |
<li>\(f : A \to B\) \(f\) is a function under which each element of set \(A\) has an image in set \(B\)</li> | |
<li>\(f : x \mapsto y\) the function \(f\) maps the element \(x\) to the element \(y\)</li> | |
<li>\(f^{-1}\) the inverse function of the one-one function \(f\)</li> | |
<li>\(gf\) the composite function of \(f\) and \(g\) which is defined by \(gf(x) = g(f(x))\)</li> | |
<li>\(\lim_{x \to a} f(x)\) the limit of \(f(x)\) as \(x\) tends to \(a\)</li> | |
<li>\(\Delta x, \delta x\) an increment of \(x\)</li> | |
<li>\(\frac{dy}{dx}\) the derivative of \(y\) with respect to \(x\)</li> | |
<li>\(\frac{d^n y}{dx^n}\) the \(n\)th derivative of \(y\) with respect to \(x\)</li> | |
<li>\(f'(x), f''(x), \ldots, f^{(n)}(x)\) the first, second, \ldots, \(n\)th derivatives of \(f(x)\) with respect to \(x\)</li> | |
<li>\(\int y \, dx\) the indefinite integral of \(y\) with respect to \(x\)</li> | |
<li>\(\int_a^b y \, dx\) the definite integral of \(y\) with respect to \(x\) between the limits \(x = a\) and \(x = b\)</li> | |
<li>\(\dot{x}, \ddot{x}, \ldots, \) the first, second, \ldots, derivatives of \(x\) with respect to \(t\)</li> | |
</ul> | |
<h2>5. Exponential and logarithmic functions</h2> | |
<ul> | |
<li>\(e\) base of natural logarithms</li> | |
<li>\(e^x, \exp(x)\) exponential function of \(x\)</li> | |
<li>\(\log_a x\) logarithm to the base \(a\) of \(x\)</li> | |
<li>\(\ln x\) natural logarithm of \(x\)</li> | |
<li>\(\lg x, \log_{10} x\) logarithm of \(x\) to base 10</li> | |
</ul> | |
<h2>6. Circular and hyperbolic functions</h2> | |
<ul> | |
<li>\(\sin, \cos, \tan, \csc, \sec, \cot\) the circular functions</li> | |
<li>\(\sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}\) the inverse circular functions</li> | |
<li>\(\sinh, \cosh, \tanh, \csch, \sech, \coth\) the hyperbolic functions</li> | |
<li>\(\sinh^{-1}, \cosh^{-1}, \tanh^{-1}, \csch^{-1}, \sech^{-1}, \coth^{-1}\) the inverse hyperbolic functions</li> | |
</ul> | |
<h2>7. Complex numbers</h2> | |
<ul> | |
<li>\(i\) the imaginary unit, \(i^2 = -1\)</li> | |
<li>\(z\) a complex number, \(z = x + iy = r(\cos \theta + i \sin \theta)\)</li> | |
<li>\(\Re z\) the real part of \(z\), \(\Re z = x\)</li> | |
<li>\(\Im z\) the imaginary part of \(z\), \(\Im z = y\)</li> | |
<li>\(|z|\) the modulus of \(z\), \(\sqrt{x^2 + y^2}\)</li> | |
<li>\(\arg z\) the argument of \(z\), \(\arg z = \theta\) where \(-\pi < \theta \leq \pi\)</li> | |
<li>\(z^*\) the complex conjugate of \(z\), \(x - iy\)</li> | |
</ul> | |
<h2>8. Matrices</h2> | |
<ul> | |
<li>\(\mathbf{M}\) a matrix \(\mathbf{M}\)</li> | |
<li>\(\mathbf{M}^{-1}\) the inverse of the non-singular square matrix \(\mathbf{M}\)</li> | |
<li>\(\det \mathbf{M}, |\mathbf{M}|\) the determinant of the square matrix \(\mathbf{M}\)</li> | |
<li>\(\mathbf{I}\) an identity (or unit) matrix</li> | |
</ul> | |
<h2>9. Vectors</h2> | |
<ul> | |
<li>\(\mathbf{a}\) the vector \(\mathbf{a}\)</li> | |
<li>\(\overrightarrow{AB}\) the vector represented in magnitude and direction by the directed line segment \(\overrightarrow{AB}\)</li> | |
<li>\(\hat{a}\) a unit vector in the direction of \(\mathbf{a}\)</li> | |
<li>\(\mathbf{i}, \mathbf{j}, \mathbf{k}\) unit vectors in the directions of the Cartesian coordinate axes</li> | |
<li>\(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\) the vectors \(x\mathbf{i} + y\mathbf{j}\) (in 2 dimensions) and \(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}\) (in 3 dimensions)</li> | |
<li>\(|\mathbf{a}|, \mathbf{a}\) the magnitude of \(\mathbf{a}\)</li> | |
<li>\(|\overrightarrow{AB}|, \overrightarrow{AB}\) the magnitude of \(\overrightarrow{AB}\)</li> | |
<li>\(\mathbf{a} \cdot \mathbf{b}\) the scalar product of \(\mathbf{a}\) and \(\mathbf{b}\)</li> | |
<li>\(\mathbf{a} \times \mathbf{b}\) the vector product of \(\mathbf{a}\) and \(\mathbf{b}\)</li> | |
</ul> | |
<h2>10. Probability and statistics</h2> | |
<ul> | |
<li>\(A, B, C, \ldots\) events</li> | |
<li>\(A \cup B\) union of the events \(A\) and \(B\)</li> | |
<li>\(A \cap B\) intersection of the events \(A\) and \(B\)</li> | |
<li>\(P(A)\) probability of the event \(A\)</li> | |
<li>\(A'\) complement of the event \(A\)</li> | |
<li>\(P(A | B)\) probability of the event \(A\) conditional on the event \(B\)</li> | |
<li>\(\binom{n}{r}\) the number of combinations of \(r\) objects from \(n\), \(\binom{n}{r} = \frac{n!}{r!(n-r)!}\)</li> | |
<li>\(\frac{n!}{(n-r)!}\) the number of permutations of \(r\) objects from \(n\)</li> | |
<li>\(X, Y, R, \ldots\) random variables</li> | |
<li>\(x, y, r, \ldots\) values of the random variables \(X, Y, R, \ldots\)</li> | |
<li>\(x_1, x_2, \ldots\) observations</li> | |
<li>\(f_1, f_2, \ldots\) frequencies with which the observations \(x_1, x_2, \ldots\) occur</li> | |
<li>\(p(x)\) probability function \(P(X = x)\) of the discrete random variable \(X\)</li> | |
<li>\(p_1, p_2, \ldots\) probabilities of the values \(x_1, x_2, \ldots\) of the discrete random variable \(X\)</li> | |
<li>\(f(x)\) value of the probability density function of a continuous random variable \(X\)</li> | |
<li>\(F(x)\) value of the cumulative distribution function of a continuous random variable \(X\)</li> | |
<li>\(E(X)\) expectation of the random variable \(X\)</li> | |
<li>\(E(g(X))\) expectation of \(g(X)\)</li> | |
<li>\(\text{Var}(X)\) variance of the random variable \(X\)</li> | |
<li>\(G_X(t)\) probability generating function for the discrete random variable \(X\)</li> | |
<li>\(M_X(t)\) moment generating function for the random variable \(X\)</li> | |
<li>\(B(n, p)\) binomial distribution with parameters \(n\) and \(p\)</li> | |
<li>\(\text{Geo}(p)\) geometric distribution with parameter \(p\)</li> | |
<li>\(\text{Po}(\lambda)\) Poisson distribution with parameter \(\lambda\)</li> | |
<li>\(N(\mu, \sigma^2)\) normal distribution with mean \(\mu\) and variance \(\sigma^2\)</li> | |
<li>\(\mu\) population mean</li> | |
<li>\(\sigma^2\) population variance</li> | |
<li>\(\sigma\) population standard deviation</li> | |
<li>\(\bar{x}\) sample mean, \(\frac{1}{n} \sum_{i=1}^n x_i\)</li> | |
<li>\(s^2\) unbiased estimate of population variance from a sample, \(\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\)</li> | |
<li>\(\rho\) product moment correlation coefficient for a population</li> | |
<li>\(r\) product moment correlation coefficient for a sample</li> | |
<li>\(\phi\) probability density function of the standardised normal variable \(Z \sim N(0, 1)\)</li> | |
<li>\(\Phi\) cumulative distribution function of the standardised normal variable \(Z \sim N(0, 1)\)</li> | |
<li>\(H_0, H_1\) null and alternative hypotheses for a hypothesis test</li> | |
</ul> | |
</body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment