Created
November 7, 2019 10:40
-
-
Save jinglescode/4045ebaf9dd456919e08775fc3fb8cbb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class conv_block(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super(conv_block, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True)) | |
def forward(self, x): | |
x = self.conv(x) | |
return x | |
class up_conv(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super(up_conv, self).__init__() | |
self.up = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x): | |
x = self.up(x) | |
return x | |
class UNet(nn.Module): | |
def __init__(self, in_ch=3, out_ch=1): | |
super(UNet, self).__init__() | |
n1 = 64 | |
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] | |
self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Conv1 = conv_block(in_ch, filters[0]) | |
self.Conv2 = conv_block(filters[0], filters[1]) | |
self.Conv3 = conv_block(filters[1], filters[2]) | |
self.Conv4 = conv_block(filters[2], filters[3]) | |
self.Conv5 = conv_block(filters[3], filters[4]) | |
self.Up5 = up_conv(filters[4], filters[3]) | |
self.Up_conv5 = conv_block(filters[4], filters[3]) | |
self.Up4 = up_conv(filters[3], filters[2]) | |
self.Up_conv4 = conv_block(filters[3], filters[2]) | |
self.Up3 = up_conv(filters[2], filters[1]) | |
self.Up_conv3 = conv_block(filters[2], filters[1]) | |
self.Up2 = up_conv(filters[1], filters[0]) | |
self.Up_conv2 = conv_block(filters[1], filters[0]) | |
self.Conv1x1 = nn.Conv2d(filters[0], out_ch, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
e1 = self.Conv1(x) | |
e2 = self.Maxpool1(e1) | |
e2 = self.Conv2(e2) | |
e3 = self.Maxpool2(e2) | |
e3 = self.Conv3(e3) | |
e4 = self.Maxpool3(e3) | |
e4 = self.Conv4(e4) | |
e5 = self.Maxpool4(e4) | |
e5 = self.Conv5(e5) | |
d5 = self.Up5(e5) | |
d5 = torch.cat((e4, d5), dim=1) | |
d5 = self.Up_conv5(d5) | |
d4 = self.Up4(d5) | |
d4 = torch.cat((e3, d4), dim=1) | |
d4 = self.Up_conv4(d4) | |
d3 = self.Up3(d4) | |
d3 = torch.cat((e2, d3), dim=1) | |
d3 = self.Up_conv3(d3) | |
d2 = self.Up2(d3) | |
d2 = torch.cat((e1, d2), dim=1) | |
d2 = self.Up_conv2(d2) | |
out = self.Conv1x1(d2) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment