Created
November 18, 2019 06:06
-
-
Save jinglescode/9d9ed6027e62e389e3165b59209e838e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class conv_block_nested(nn.Module): | |
def __init__(self, in_ch, mid_ch, out_ch): | |
super(conv_block_nested, self).__init__() | |
self.activation = nn.ReLU(inplace=True) | |
self.conv1 = nn.Conv2d(in_ch, mid_ch, kernel_size=3, padding=1, bias=True) | |
self.bn1 = nn.BatchNorm2d(mid_ch) | |
self.conv2 = nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1, bias=True) | |
self.bn2 = nn.BatchNorm2d(out_ch) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.activation(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
output = self.activation(x) | |
return output | |
class Nested_UNet(nn.Module): | |
def __init__(self, in_ch=3, out_ch=1): | |
super(Nested_UNet, self).__init__() | |
n1 = 64 | |
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
self.conv0_0 = conv_block_nested(in_ch, filters[0], filters[0]) | |
self.conv1_0 = conv_block_nested(filters[0], filters[1], filters[1]) | |
self.conv2_0 = conv_block_nested(filters[1], filters[2], filters[2]) | |
self.conv3_0 = conv_block_nested(filters[2], filters[3], filters[3]) | |
self.conv4_0 = conv_block_nested(filters[3], filters[4], filters[4]) | |
self.conv0_1 = conv_block_nested(filters[0] + filters[1], filters[0], filters[0]) | |
self.conv1_1 = conv_block_nested(filters[1] + filters[2], filters[1], filters[1]) | |
self.conv2_1 = conv_block_nested(filters[2] + filters[3], filters[2], filters[2]) | |
self.conv3_1 = conv_block_nested(filters[3] + filters[4], filters[3], filters[3]) | |
self.conv0_2 = conv_block_nested(filters[0]*2 + filters[1], filters[0], filters[0]) | |
self.conv1_2 = conv_block_nested(filters[1]*2 + filters[2], filters[1], filters[1]) | |
self.conv2_2 = conv_block_nested(filters[2]*2 + filters[3], filters[2], filters[2]) | |
self.conv0_3 = conv_block_nested(filters[0]*3 + filters[1], filters[0], filters[0]) | |
self.conv1_3 = conv_block_nested(filters[1]*3 + filters[2], filters[1], filters[1]) | |
self.conv0_4 = conv_block_nested(filters[0]*4 + filters[1], filters[0], filters[0]) | |
self.final = nn.Conv2d(filters[0], out_ch, kernel_size=1) | |
def forward(self, x): | |
x0_0 = self.conv0_0(x) | |
x1_0 = self.conv1_0(self.pool(x0_0)) | |
x0_1 = self.conv0_1(torch.cat([x0_0, self.Up(x1_0)], 1)) | |
x2_0 = self.conv2_0(self.pool(x1_0)) | |
x1_1 = self.conv1_1(torch.cat([x1_0, self.Up(x2_0)], 1)) | |
x0_2 = self.conv0_2(torch.cat([x0_0, x0_1, self.Up(x1_1)], 1)) | |
x3_0 = self.conv3_0(self.pool(x2_0)) | |
x2_1 = self.conv2_1(torch.cat([x2_0, self.Up(x3_0)], 1)) | |
x1_2 = self.conv1_2(torch.cat([x1_0, x1_1, self.Up(x2_1)], 1)) | |
x0_3 = self.conv0_3(torch.cat([x0_0, x0_1, x0_2, self.Up(x1_2)], 1)) | |
x4_0 = self.conv4_0(self.pool(x3_0)) | |
x3_1 = self.conv3_1(torch.cat([x3_0, self.Up(x4_0)], 1)) | |
x2_2 = self.conv2_2(torch.cat([x2_0, x2_1, self.Up(x3_1)], 1)) | |
x1_3 = self.conv1_3(torch.cat([x1_0, x1_1, x1_2, self.Up(x2_2)], 1)) | |
x0_4 = self.conv0_4(torch.cat([x0_0, x0_1, x0_2, x0_3, self.Up(x1_3)], 1)) | |
output = self.final(x0_4) | |
return output |
hi ! I want to know where is the deep supervision in this code please.
I can't see the deep supervision for x0_1,x0_2,x0_3,x0_4
thank you very much
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hey!! your explanation in the blog is really good.
Can you please help me and tell me how can we use this for cervical cancer images