Last active
June 7, 2020 06:53
-
-
Save jinglescode/a1751ee6c2bec1c61ca4833ce8c9b98e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import TransformerEncoder, TransformerEncoderLayer | |
class TransformerModel(nn.Module): | |
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): | |
super(TransformerModel, self).__init__() | |
self.src_mask = None | |
self.pos_encoder = PositionalEncoding(ninp, dropout) | |
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) | |
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) | |
self.encoder = nn.Embedding(ntoken, ninp) | |
self.ninp = ninp | |
self.decoder = nn.Linear(ninp, ntoken) | |
self.init_weights() | |
def _generate_square_subsequent_mask(self, sz): | |
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) | |
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
return mask | |
def init_weights(self): | |
initrange = 0.1 | |
self.encoder.weight.data.uniform_(-initrange, initrange) | |
self.decoder.bias.data.zero_() | |
self.decoder.weight.data.uniform_(-initrange, initrange) | |
def forward(self, src): | |
if self.src_mask is None or self.src_mask.size(0) != len(src): | |
device = src.device | |
mask = self._generate_square_subsequent_mask(len(src)).to(device) | |
self.src_mask = mask | |
src = self.encoder(src) * math.sqrt(self.ninp) | |
src = self.pos_encoder(src) | |
output = self.transformer_encoder(src, self.src_mask) | |
output = self.decoder(output) | |
return output | |
class PositionalEncoding(nn.Module): | |
"Implement the PE function." | |
def __init__(self, d_model, dropout, max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
# Compute the positional encodings once in log space. | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2) * | |
-(math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + Variable(self.pe[:, :x.size(1)], | |
requires_grad=False) | |
return self.dropout(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment