Created
December 6, 2019 14:02
-
-
Save jinglescode/d5296e0bf3ee9b4b135b6f8d9224e1b0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class conv_block(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super(conv_block, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True)) | |
def forward(self, x): | |
x = self.conv(x) | |
return x | |
class up_conv(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super(up_conv, self).__init__() | |
self.up = nn.Sequential( | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x): | |
x = self.up(x) | |
return x | |
class Attention_block(nn.Module): | |
def __init__(self, F_g, F_l, F_int): | |
super(Attention_block, self).__init__() | |
self.W_g = nn.Sequential( | |
nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), | |
nn.BatchNorm2d(F_int) | |
) | |
self.W_x = nn.Sequential( | |
nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), | |
nn.BatchNorm2d(F_int) | |
) | |
self.psi = nn.Sequential( | |
nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), | |
nn.BatchNorm2d(1), | |
nn.Sigmoid() | |
) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, g, x): | |
g1 = self.W_g(g) | |
x1 = self.W_x(x) | |
psi = self.relu(g1 + x1) | |
psi = self.psi(psi) | |
out = x * psi | |
return out | |
class UNet_Attention(nn.Module): | |
def __init__(self, img_ch=3, output_ch=1): | |
super(UNet_Attention, self).__init__() | |
n1 = 64 | |
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] | |
self.Maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.Conv1 = conv_block(img_ch, filters[0]) | |
self.Conv2 = conv_block(filters[0], filters[1]) | |
self.Conv3 = conv_block(filters[1], filters[2]) | |
self.Conv4 = conv_block(filters[2], filters[3]) | |
self.Conv5 = conv_block(filters[3], filters[4]) | |
self.Up5 = up_conv(filters[4], filters[3]) | |
self.Att5 = Attention_block(F_g=filters[3], F_l=filters[3], F_int=filters[2]) | |
self.Up_conv5 = conv_block(filters[4], filters[3]) | |
self.Up4 = up_conv(filters[3], filters[2]) | |
self.Att4 = Attention_block(F_g=filters[2], F_l=filters[2], F_int=filters[1]) | |
self.Up_conv4 = conv_block(filters[3], filters[2]) | |
self.Up3 = up_conv(filters[2], filters[1]) | |
self.Att3 = Attention_block(F_g=filters[1], F_l=filters[1], F_int=filters[0]) | |
self.Up_conv3 = conv_block(filters[2], filters[1]) | |
self.Up2 = up_conv(filters[1], filters[0]) | |
self.Att2 = Attention_block(F_g=filters[0], F_l=filters[0], F_int=32) | |
self.Up_conv2 = conv_block(filters[1], filters[0]) | |
self.Conv = nn.Conv2d(filters[0], output_ch, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
e1 = self.Conv1(x) | |
e2 = self.Maxpool1(e1) | |
e2 = self.Conv2(e2) | |
e3 = self.Maxpool2(e2) | |
e3 = self.Conv3(e3) | |
e4 = self.Maxpool3(e3) | |
e4 = self.Conv4(e4) | |
e5 = self.Maxpool4(e4) | |
e5 = self.Conv5(e5) | |
d5 = self.Up5(e5) | |
x4 = self.Att5(g=d5, x=e4) | |
d5 = torch.cat((x4, d5), dim=1) | |
d5 = self.Up_conv5(d5) | |
d4 = self.Up4(d5) | |
x3 = self.Att4(g=d4, x=e3) | |
d4 = torch.cat((x3, d4), dim=1) | |
d4 = self.Up_conv4(d4) | |
d3 = self.Up3(d4) | |
x2 = self.Att3(g=d3, x=e2) | |
d3 = torch.cat((x2, d3), dim=1) | |
d3 = self.Up_conv3(d3) | |
d2 = self.Up2(d3) | |
x1 = self.Att2(g=d2, x=e1) | |
d2 = torch.cat((x1, d2), dim=1) | |
d2 = self.Up_conv2(d2) | |
out = self.Conv(d2) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @jinglescode! Thanks a lot for your answer and your permission to build upon your code. The article is a very nice read and I currently can't think of things that need clarification. If something comes to my mind, I'll let you know.
I'll of course mention the original authors and you when publishing my code.
Best regards