Name | Latitude | Longitude | Cluster | Day |
---|---|---|---|---|
Athens International Airport | 37.9356467 | 23.9484156 | 2 | 1 |
Acropolis of Athens | 37.9715323 | 23.7257492 | 2 | 1 |
Pl. Agias Irinis 2 | 37.977418 | 23.7280221 | 2 | 1 |
Diporto - Secret underground restaurant | 37.9806622 | 23.7257688 | 2 | 1 |
Temple of Zeus | 37.9692838 | 23.7331012 | 2 | 1 |
Plaka | 37.9725529 | 23.7303363999999 | 2 | 1 |
Temple of Olympian Zeus | 37.9693 | 23.7331 | 2 | 1 |
Lake Vouliagmeni | 37.8078002 | 23.7855018 | 2 | 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
places = [] | |
with open(kml_filename, "r") as file: | |
content = file.readlines() | |
content = "".join(content) | |
bs_content = BeautifulSoup(content, "xml") | |
placemarks = bs_content.findAll('Placemark') | |
for placemark in placemarks: |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
starting_point = 2 #@param {type:"integer"} | |
cur_index = starting_point | |
seq = [cur_index] | |
while len(seq) < len(list(df_distance_matrix.keys())): | |
nearest_clusters = list(df_distance_matrix[cur_index].sort_values().index) | |
for cluster_id in nearest_clusters: | |
if cluster_id != cur_index and cluster_id not in seq: | |
seq.append(cluster_id) | |
cur_index = cluster_id |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.spatial.distance import cdist | |
distance_matrix = cdist( | |
mean_lat_long_by_group.values, | |
mean_lat_long_by_group.values | |
) | |
df_distance_matrix = pd.DataFrame(distance_matrix) | |
df_distance_matrix |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000000 | 11.987656 | 9.896897 | 11.599586 | 10.742770 | 0.386050 | 12.197858 | 11.100726 | 0.249281 | 12.021981 | 12.517198 | 11.246962 |
1 | 11.987656 | 0.000000 | 2.276986 | 1.396634 | 2.084259 | 11.607277 | 1.117249 | 1.660945 | 11.797155 | 1.488543 | 1.208088 | 1.837654 |
2 | 9.896897 | 2.276986 | 0.000000 | 2.706433 | 2.515520 | 9.523493 | 2.987206 | 2.456373 | 9.720741 | 3.096684 | 3.240456 | 2.751974 |
3 | 11.599586 | 1.396634 | 2.706433 | 0.000000 | 0.935321 | 11.214140 | 0.658161 | 0.507003 | 11.391950 | 0.439252 | 0.966409 | 0.500744 |
4 | 10.742770 | 2.084259 | 2.515520 | 0.935321 | 0.000000 | 10.356811 | 1.593083 | 0.454365 | 10.530636 | 1.306551 | 1.900750 | 0.504926 |
5 | 0.386050 | 11.607277 | 9.523493 | 11.214140 | 10.356811 | 0.000000 | 11.813022 | 10.715118 | 0.211347 | 11.636331 | 12.132428 | 10.861026 |
6 | 12.197858 | 1.117249 | 2.987206 | 0.658161 | 1.593083 | 11.813022 | 0.000000 | 1.155043 | 11.993443 | 0.439558 | 0.320395 | 1.143226 |
7 | 11.100726 | 1.660945 | 2.456373 | 0.507003 | 0.454365 | 10.715118 | 1.155043 | 0.000000 | 10.892023 | 0.921615 | 1.469345 | 0.297166 |
Cluster | Latitude | Longitude |
---|---|---|
0 | 40.846395 | 14.281423 |
1 | 36.411881 | 25.418702 |
2 | 37.958535 | 23.747617 |
3 | 35.359073 | 24.500997 |
4 | 35.449291 | 23.570038 |
5 | 40.645347 | 14.610990 |
6 | 35.325403 | 25.158296 |
7 | 35.517232 | 24.019294 |
Name | Latitude | Longitude |
---|---|---|
Athens International Airport | 37.9356467 | 23.9484156 |
Ancient Agora of Athens | 37.9746507 | 23.7219716 |
Tzistarakis Mosque | 37.9759204 | 23 |
Roman Forum | 37.9743749 | 23.7255435 |
Theatre of Dionysus | 37.9703658 | 23.7278553 |
Parthenon | 37.9715285 | 23.7267166 |
Acropolis Museum | 37.9684499 | 23.7285227 |
Temple of Olympian Zeus | 37.9693 | 23 |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class conv_block(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super(conv_block, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1, bias=True), | |
nn.BatchNorm2d(out_ch), |