Created
June 14, 2016 03:46
-
-
Save jinhoyoo/072af4b8436c85cb960e6a6354d9a4f5 to your computer and use it in GitHub Desktop.
tenssor flow: linear regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
x1_data = [1, 0, 3, 0, 5] | |
x2_data = [0, 2, 0, 4, 0] | |
y_data = [1, 2, 3, 4, 5] | |
W1 = tf.Variable(tf.random_uniform([1], -1.0, 1.0) ) | |
W2 = tf.Variable(tf.random_uniform([1], -1.0, 1.0) ) | |
b = tf.Variable(tf.random_uniform([1], -1.0, 1.0) ) | |
hypothesis = W1*x1_data + W2*x2_data + b | |
# Cost function | |
cost = tf.reduce_mean(tf.square(y_data - hypothesis)) | |
# Optimizer confifuration | |
train = tf.train.GradientDescentOptimizer(learning_rate =0.01).minimize(cost) | |
init = tf.initialize_all_variables() | |
sess = tf.Session() | |
sess.run(init) | |
for step in range(100): | |
sess.run(train) | |
if step % 10 == 0: | |
print (step, sess.run(cost), sess.run(W1), sess.run(W2), sess.run(b)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment