Last active
November 17, 2017 08:06
-
-
Save jiqiujia/7d80a27e06e81b36ce54be2de5bc283e to your computer and use it in GitHub Desktop.
numerical linear algebra
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#from https://rosettacode.org/wiki/LU_decomposition#Python | |
from pprint import pprint | |
def matrixMul(A, B): | |
TB = zip(*B) | |
return [[sum(ea*eb for ea,eb in zip(a,b)) for b in TB] for a in A] | |
def pivotize(m): | |
"""Creates the pivoting matrix for m.""" | |
n = len(m) | |
ID = [[float(i == j) for i in xrange(n)] for j in xrange(n)] | |
for j in xrange(n): | |
row = max(xrange(j, n), key=lambda i: abs(m[i][j])) | |
if j != row: | |
ID[j], ID[row] = ID[row], ID[j] | |
return ID | |
def lu(A): | |
"""Decomposes a nxn matrix A by PA=LU and returns L, U and P.""" | |
n = len(A) | |
L = [[0.0] * n for i in xrange(n)] | |
U = [[0.0] * n for i in xrange(n)] | |
P = pivotize(A) | |
A2 = matrixMul(P, A) | |
for j in xrange(n): | |
L[j][j] = 1.0 | |
for i in xrange(j+1): | |
s1 = sum(U[k][j] * L[i][k] for k in xrange(i)) | |
U[i][j] = A2[i][j] - s1 | |
for i in xrange(j, n): | |
s2 = sum(U[k][j] * L[i][k] for k in xrange(j)) | |
L[i][j] = (A2[i][j] - s2) / U[j][j] | |
return (L, U, P) | |
a = [[1, 3, 5], [2, 4, 7], [1, 1, 0]] | |
for part in lu(a): | |
pprint(part, width=19) | |
b = [[11,9,24,2],[1,5,2,6],[3,17,18,1],[2,5,7,1]] | |
for part in lu(b): | |
pprint(part) | |
################ | |
#could be changed to inplace calculation | |
def LU(A): | |
U = np.copy(A) | |
m, n = A.shape | |
L = np.eye(n) | |
for k in range(n-1): | |
for j in range(k+1,n): | |
L[j,k] = U[j,k]/U[k,k] | |
U[j,k:n] -= L[j,k] * U[k,k:n] | |
return L, U |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#from https://github.com/fastai/numerical-linear-algebra | |
#refer to: Randomized Matrix Decompositions using R | |
# computes an orthonormal matrix whose range approximates the range of A | |
# power_iteration_normalizer can be safe_sparse_dot (fast but unstable), LU (imbetween), or QR (slow but most accurate) | |
def randomized_range_finder(A, size, n_iter=5): | |
Q = np.random.normal(size=(A.shape[1], size)) | |
for i in range(n_iter): | |
Q, _ = linalg.lu(A @ Q, permute_l=True) | |
Q, _ = linalg.lu(A.T @ Q, permute_l=True) | |
Q, _ = linalg.qr(A @ Q, mode='economic') | |
return Q | |
def randomized_svd(M, n_components, n_oversamples=10, n_iter=4): | |
n_random = n_components + n_oversamples | |
Q = randomized_range_finder(M, n_random, n_iter) | |
# project M to the (k + p) dimensional space using the basis vectors | |
B = Q.T @ M | |
# compute the SVD on the thin matrix: (k + p) wide | |
Uhat, s, V = linalg.svd(B, full_matrices=False) | |
del B | |
U = Q @ Uhat | |
return U[:, :n_components], s[:n_components], V[:n_components, :] | |
u, s, v = randomized_svd(vectors, 5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment