git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
| import torch | |
| import torch.distributed as dist | |
| import torch.multiprocessing as mp | |
| from torch.utils.data import IterableDataset, DataLoader | |
| class DistributedIterableDataset(IterableDataset): | |
| """ | |
| Example implementation of an IterableDataset that handles both multiprocessing (num_workers > 0) |
| #!/usr/bin/env sh | |
| sudo apt-get update -y && \ | |
| sudo apt-get upgrade -y && \ | |
| sudo apt-get dist-upgrade -y && \ | |
| sudo apt-get install build-essential software-properties-common -y && \ | |
| sudo add-apt-repository ppa:ubuntu-toolchain-r/test -y && \ | |
| sudo apt-get update -y && \ | |
| sudo apt-get install gcc-9 g++-9 -y && \ | |
| sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 60 --slave /usr/bin/g++ g++ /usr/bin/g++-9 && \ |
| import numpy as np | |
| def make_lsh_model(nb_tables, nb_bits, nb_dimensions, vector_sample): | |
| # vector_sample: np arr w/ shape (2 * nb_tables * nb_tables, nb_dimensions). | |
| # normals, midpoints: np arrs w/ shape (nb_bits, nb_dimensions) | |
| # thresholds: np arrs w/ shape (nb_bits) | |
| # all_normals, all_thresholds: lists w/ one normal, one threshold per table. | |
| all_normals, all_thresholds = [], [] | |
| for i in range(0, len(vector_sample), 2 * nb_bits): | |
| vector_sample_a = vector_sample[i:i + nb_bits] |
| ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
| ## Created by: Hang Zhang, Rutgers University, Email: [email protected] | |
| ## Modified by Thomas Wolf, HuggingFace Inc., Email: [email protected] | |
| ## Copyright (c) 2017-2018 | |
| ## | |
| ## This source code is licensed under the MIT-style license found in the | |
| ## LICENSE file in the root directory of this source tree | |
| ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
| """Encoding Data Parallel""" |
| Compile the C++ code creating a shared library (or shared object in UNIX) | |
| $ clang++ TestJNI.cpp -o libTestJNI.so -fPIC -shared -std=c++11 -I$HOME/opt/java/include -I$HOME/opt/java/include/linux | |
| Run the application | |
| $ scala -save load.scala | |
| dir = /home/archbox/opengl/jni/libTestJNI.so | |
| Hello world java | |
| i = 0 |
git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
| import argparse | |
| import os | |
| import shutil | |
| import time | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.parallel | |
| import torch.backends.cudnn as cudnn | |
| import torch.optim |
| # This is an example for the CIFAR-10 dataset. | |
| # There's a function for creating a train and validation iterator. | |
| # There's also a function for creating a test iterator. | |
| # Inspired by https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4 | |
| from utils import plot_images | |
| def get_train_valid_loader(data_dir, | |
| batch_size, | |
| augment, |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| import torch.nn.functional as F | |
| from torch.autograd import Variable | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| import numpy as np |
| import numpy as np | |
| from scipy.ndimage.interpolation import map_coordinates | |
| from scipy.ndimage.filters import gaussian_filter | |
| def elastic_transform(image, alpha, sigma, random_state=None): | |
| """Elastic deformation of images as described in [Simard2003]_. | |
| .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for | |
| Convolutional Neural Networks applied to Visual Document Analysis", in |