Skip to content

Instantly share code, notes, and snippets.

@jiqiujia
jiqiujia / lasagne_util.py
Created October 16, 2016 13:44
util function using lasagne
def architecture_string(layer):
model_arch = ''
for i, layer in enumerate(lasagne.layers.get_all_layers(layer)):
name = string.ljust(layer.__class__.__name__, 28)
model_arch += " %2i %s %s " % (i, name,
lasagne.layers.get_output_shape(layer))
if hasattr(layer, 'filter_size'):
model_arch += str(layer.filter_size[0])
@jiqiujia
jiqiujia / genSpectrogram.m
Created October 16, 2016 13:41
generate the spectrogram of one dimensional signal
%%reference: http://www.mathworks.com/help/signal/ref/spectrogram.html
dat = load('/media/dl/data1/kaggle_eeg_2016/train_1/1_1_1.mat');
dat = dat.dataStruct.data;
dat = dat(:, 1);
Nx = length(dat); %sample number
nsc = floor(Nx/600); %number of signal sections
nov = floor(nsc/2); %overlap between adajacent windows
nff = max(256,2^nextpow2(nsc)); %number of samples to compute the FFT
@jiqiujia
jiqiujia / pg-pong.py
Created September 22, 2016 06:11 — forked from karpathy/pg-pong.py
Training a Neural Network ATARI Pong agent with Policy Gradients from raw pixels
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
@jiqiujia
jiqiujia / min-char-rnn.py
Created July 29, 2016 06:34 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
{
"Mississippi": [30.1477890014648, 34.9960556030273, -91.6550140380859, -88.0980072021484],
"Oklahoma": [33.6191940307617, 37.0021362304688, -103.002571105957, -94.4312133789062],
"Delaware": [38.4511260986328, 39.8394355773926, -75.7890472412109, -74.9846343994141],
"Minnesota": [43.4994277954102, 49.3844909667969, -97.2392654418945, -89.4833831787109],
"Illinois": [36.9701309204102, 42.5083045959473, -91.513053894043, -87.0199203491211],
"Arkansas": [33.0041046142578, 36.4996032714844, -94.6178131103516, -89.6422424316406],
"New Mexico": [31.3323001861572, 37.0001411437988, -109.050178527832, -103.000862121582],
"Indiana": [37.7717399597168, 41.7613716125488, -88.0997085571289, -84.7845764160156],
"Louisiana": [28.9210300445557, 33.019458770752, -94.0431518554688, -88.817008972168],
[{"place_id":"97994878","licence":"Data \u00a9 OpenStreetMap contributors, ODbL 1.0. http:\/\/www.openstreetmap.org\/copyright","osm_type":"relation","osm_id":"161950","boundingbox":["30.1375217437744","35.0080299377441","-88.4731369018555","-84.8882446289062"],"lat":"33.2588817","lon":"-86.8295337","display_name":"Alabama, United States of America","place_rank":"8","category":"boundary","type":"administrative","importance":0.83507032450272,"icon":"http:\/\/nominatim.openstreetmap.org\/images\/mapicons\/poi_boundary_administrative.p.20.png"}]
[{"place_id":"97421560","licence":"Data \u00a9 OpenStreetMap contributors, ODbL 1.0. http:\/\/www.openstreetmap.org\/copyright","osm_type":"relation","osm_id":"162018","boundingbox":["31.3321762084961","37.0042610168457","-114.818359375","-109.045196533203"],"lat":"34.395342","lon":"-111.7632755","display_name":"Arizona, United States of America","place_rank":"8","category":"boundary","type":"administrative","importance":0.83922181098242,"icon":"http:\/\/nominatim.openst