Skip to content

Instantly share code, notes, and snippets.

@jiristepan
Created August 18, 2018 22:46
Show Gist options
  • Save jiristepan/738c97adfed8b317250de821132443f2 to your computer and use it in GitHub Desktop.
Save jiristepan/738c97adfed8b317250de821132443f2 to your computer and use it in GitHub Desktop.
#install.packages("neuralnet")
library(neuralnet)
library(MASS)
#pripravime si data
data <- Boston
index <- sample(1:nrow(data),round(0.8*nrow(data)))
train <- data[index,]
test <- data[-index,]
# zkusime predikci pomoci linearni regrese a zapamatujeme si chybu teto predikce MSE.lm
lm.fit <- glm(medv~., data=train)
summary(lm.fit)
pr.lm <- predict(lm.fit,test)
MSE.lm <- sum((pr.lm - test$medv)^2)/nrow(test)
# provedeme skalovani dat pro neuronovou sit
maxs <- apply(data, 2, max)
mins <- apply(data, 2, min)
scaled <- as.data.frame(scale(data, center = mins, scale = maxs - mins))
train_ <- scaled[index,]
test_ <- scaled[-index,]
# a vytvorime samotnou sit pomoci package neuralnet a natrenujeme ji
n <- names(train_)
f <- as.formula(paste("medv ~", paste(n[!n %in% "medv"], collapse = " + ")))
nn <- neuralnet(f,data=train_,hidden=c(5,3),linear.output=T)
# podivame se na parametry vysledku
summary(nn)
# pro zajimavost si nakresilime jak vypada
plot(nn)
# nyni si spocitame predikci a provedeme skalovani zpet na puvodni hodnoty
pr.nn <- compute(nn,test_[,1:13])
pr.nn_ <- pr.nn$net.result*(max(data$medv)-min(data$medv))+min(data$medv)
test.r <- (test_$medv)*(max(data$medv)-min(data$medv))+min(data$medv)
# a zapamatujeme si chybu predikce na tech samych datech
MSE.nn <- sum((test.r - pr.nn_)^2)/nrow(test_)
# konecne porovname chybu odhadu obou metod lm a nn
print(paste(MSE.lm,MSE.nn))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment