Skip to content

Instantly share code, notes, and snippets.

@jishanshaikh4
Forked from badjano/biggan_api.py
Created May 15, 2022 00:02
Show Gist options
  • Save jishanshaikh4/0a3c72c8959be937c3c339dffa5ab811 to your computer and use it in GitHub Desktop.
Save jishanshaikh4/0a3c72c8959be937c3c339dffa5ab811 to your computer and use it in GitHub Desktop.
import math
from moviepy.editor import concatenate, ImageClip
import os
import platform
import subprocess
import random
import torch
# pip install pytorch-pretrained-biggan
from pytorch_pretrained_biggan import (BigGAN, truncated_noise_sample, convert_to_images)
import numpy as np
model = BigGAN.from_pretrained('biggan-deep-512')
total_frames = 60
def convert_to_video(imgs):
fps = 30
clips = [ImageClip(m).set_duration(1/fps)
for m in imgs]
folder = "/".join(imgs[0].split("/")[:-1])
video = concatenate(clips, method="compose")
filename = '%s/video.mp4' % folder
video.write_videofile(filename, fps=fps)
return filename
def open_file(path):
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
subprocess.Popen(["open", path])
else:
subprocess.Popen(["xdg-open", path])
def get_image(class_vector, noise_vector, truncation=0.5):
class_vector = torch.from_numpy(class_vector)
noise_vector = torch.from_numpy(noise_vector)
# If you have a GPU, put everything on cuda
# noise_vector = noise_vector.to('cuda')
# class_vector = class_vector.to('cuda')
# model.to('cuda')
with torch.no_grad():
output = model(noise_vector, class_vector, truncation)
return convert_to_images(output)[0]
def get_classvector(num):
class_vector = [[np.float32(0)] * 1000]
class_vector[0][num] = np.float32(1.0)
return np.array(class_vector)
def clamp(param, min_, max_):
return max(min_, min(max_, param))
def generate_all_classes():
for num in range(0, 1000):
generate_class(num)
def generate_class(num):
truncation = 0.5
batch_size = 1
for variation in range(1, 6):
path = "images/class_%d" % num
filename = "%s/%d.png" % (path, variation)
if not os.path.exists(filename):
noise_vector = truncated_noise_sample(truncation=truncation, batch_size=batch_size)
class_vector = get_classvector(num)
if not os.path.exists(path):
os.makedirs(path)
get_image(class_vector, noise_vector, truncation).save(filename)
def generate_random_morph():
all = list(range(1, 1001))
num1 = random.choice(all)
all.remove(num1)
num2 = random.choice(all)
noise_vector = truncated_noise_sample(truncation=0.5, batch_size=1)
path = "animations/class_%d_%d" % (num1, num2)
if not os.path.exists(path):
os.makedirs(path)
make_frames(list(range(total_frames + 1)), total_frames, num1, num2, noise_vector, path, )
open_file(path)
def generate_random_morph_sequence(count, silent=False):
noise_vector = truncated_noise_sample(truncation=0.5, batch_size=1)
all = list(range(1, 1001))
nums = []
for i in range(count):
num = random.choice(all)
all.remove(num)
nums.append(num)
nums.append(nums[0])
path = "animations/class_%s" % "_".join([str(a) for a in nums])
if not os.path.exists(path):
os.makedirs(path)
frames = []
for i in range(len(nums) - 1):
num1 = nums[i]
num2 = nums[i + 1]
frames += make_frames(list(range(total_frames + 1)), total_frames, num1, num2, noise_vector, path,
i * total_frames)
if not silent:
open_file(path)
convert_to_video(frames)
def make_frames(c, total_frames, num1, num2, noise_vector, path, start=0):
frames = []
for i in c:
frame = make_frame(i, total_frames, num1, num2, noise_vector, path, start)
if frame:
frames.append(frame)
return frames
def ease(t):
return t
def make_frame(i, total_frames, num1, num2, noise_vector, path, start=0):
perc = i / total_frames
perc1 = ease(1 - perc)
perc2 = ease(perc)
class_vector = [[np.float32(0)] * 1000]
class_vector[0][num1] = np.float32(perc1)
class_vector[0][num2] = np.float32(perc2)
class_vector = np.array(class_vector)
filename = "%s/%d.png" % (path, start + i)
if not os.path.exists(filename): # avoids making frame that already exists
get_image(class_vector, noise_vector).save(filename)
print(filename)
return filename
return None
if __name__ == '__main__':
# generate_all_classes() # this will generate one image of each class
generate_random_morph_sequence(10, True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment