Created
September 23, 2015 20:05
-
-
Save jjhelmus/85446a2ccaaadbc08472 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<title>Statistical functions (scipy.stats) — SciPy v0.16.0 Reference Guide</title> | |
<link rel="stylesheet" type="text/css" href="_static/css/spc-bootstrap.css"> | |
<link rel="stylesheet" type="text/css" href="_static/css/spc-extend.css"> | |
<link rel="stylesheet" href="_static/scipy.css" type="text/css" > | |
<link rel="stylesheet" href="_static/pygments.css" type="text/css" > | |
<script type="text/javascript"> | |
var DOCUMENTATION_OPTIONS = { | |
URL_ROOT: './', | |
VERSION: '0.16.0', | |
COLLAPSE_INDEX: false, | |
FILE_SUFFIX: '.html', | |
HAS_SOURCE: false | |
}; | |
</script> | |
<script type="text/javascript" src="_static/jquery.js"></script> | |
<script type="text/javascript" src="_static/underscore.js"></script> | |
<script type="text/javascript" src="_static/doctools.js"></script> | |
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | |
<script type="text/javascript" src="_static/js/copybutton.js"></script> | |
<link rel="top" title="SciPy v0.16.0 Reference Guide" href="index.html" > | |
<link rel="next" title="scipy.stats.rv_continuous" href="generated/scipy.stats.rv_continuous.html" > | |
<link rel="prev" title="scipy.special.xlog1py" href="generated/scipy.special.xlog1py.html" > | |
</head> | |
<body> | |
<div class="container"> | |
<div class="header"> | |
</div> | |
</div> | |
<div class="container"> | |
<div class="main"> | |
<div class="row-fluid"> | |
<div class="span12"> | |
<div class="spc-navbar"> | |
<ul class="nav nav-pills pull-left"> | |
<li class="active"><a href="index.html">SciPy v0.16.0 Reference Guide</a></li> | |
</ul> | |
<ul class="nav nav-pills pull-right"> | |
<li class="active"> | |
<a href="genindex.html" title="General Index" | |
accesskey="I">index</a> | |
</li> | |
<li class="active"> | |
<a href="py-modindex.html" title="Python Module Index" | |
>modules</a> | |
</li> | |
<li class="active"> | |
<a href="scipy-optimize-modindex.html" title="Python Module Index" | |
>modules</a> | |
</li> | |
<li class="active"> | |
<a href="generated/scipy.stats.rv_continuous.html" title="scipy.stats.rv_continuous" | |
accesskey="N">next</a> | |
</li> | |
<li class="active"> | |
<a href="generated/scipy.special.xlog1py.html" title="scipy.special.xlog1py" | |
accesskey="P">previous</a> | |
</li> | |
</ul> | |
</div> | |
</div> | |
</div> | |
<div class="row-fluid"> | |
<div class="spc-rightsidebar span3"> | |
<div class="sphinxsidebarwrapper"> | |
<p class="logo"><a href="index.html"> | |
<img class="logo" src="_static/scipyshiny_small.png" alt="Logo"> | |
</a></p> | |
<h3><a href="index.html">Table Of Contents</a></h3> | |
<ul> | |
<li><a class="reference internal" href="#">Statistical functions (<tt class="docutils literal"><span class="pre">scipy.stats</span></tt>)</a><ul> | |
<li><a class="reference internal" href="#continuous-distributions">Continuous distributions</a></li> | |
<li><a class="reference internal" href="#multivariate-distributions">Multivariate distributions</a></li> | |
<li><a class="reference internal" href="#discrete-distributions">Discrete distributions</a></li> | |
<li><a class="reference internal" href="#statistical-functions">Statistical functions</a><ul> | |
</ul> | |
</li> | |
<li><a class="reference internal" href="#circular-statistical-functions">Circular statistical functions</a></li> | |
<li><a class="reference internal" href="#contingency-table-functions">Contingency table functions</a></li> | |
<li><a class="reference internal" href="#plot-tests">Plot-tests</a></li> | |
<li><a class="reference internal" href="#masked-statistics-functions">Masked statistics functions</a></li> | |
<li><a class="reference internal" href="#univariate-and-multivariate-kernel-density-estimation-scipy-stats-kde">Univariate and multivariate kernel density estimation (<tt class="docutils literal"><span class="pre">scipy.stats.kde</span></tt>)</a></li> | |
</ul> | |
</li> | |
</ul> | |
<h4>Previous topic</h4> | |
<p class="topless"><a href="generated/scipy.special.xlog1py.html" | |
title="previous chapter">scipy.special.xlog1py</a></p> | |
<h4>Next topic</h4> | |
<p class="topless"><a href="generated/scipy.stats.rv_continuous.html" | |
title="next chapter">scipy.stats.rv_continuous</a></p> | |
</div> | |
</div> | |
<div class="span9"> | |
<div class="bodywrapper"> | |
<div class="body" id="spc-section-body"> | |
<span class="target" id="module-scipy.stats"></span><div class="section" id="module-scipy.stats"> | |
<span id="statistical-functions-scipy-stats"></span><h1>Statistical functions (<a class="reference internal" href="#module-scipy.stats" title="scipy.stats"><tt class="xref py py-mod docutils literal"><span class="pre">scipy.stats</span></tt></a>)<a class="headerlink" href="#module-scipy.stats" title="Permalink to this headline">¶</a></h1> | |
<p>This module contains a large number of probability distributions as | |
well as a growing library of statistical functions.</p> | |
<p>Each univariate distribution is an instance of a subclass of <a class="reference internal" href="generated/scipy.stats.rv_continuous.html#scipy.stats.rv_continuous" title="scipy.stats.rv_continuous"><tt class="xref py py-obj docutils literal"><span class="pre">rv_continuous</span></tt></a> | |
(<a class="reference internal" href="generated/scipy.stats.rv_discrete.html#scipy.stats.rv_discrete" title="scipy.stats.rv_discrete"><tt class="xref py py-obj docutils literal"><span class="pre">rv_discrete</span></tt></a> for discrete distributions):</p> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.rv_continuous.html#scipy.stats.rv_continuous" title="scipy.stats.rv_continuous"><tt class="xref py py-obj docutils literal"><span class="pre">rv_continuous</span></tt></a>([momtype, a, b, xtol, ...])</td> | |
<td>A generic continuous random variable class meant for subclassing.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.rv_discrete.html#scipy.stats.rv_discrete" title="scipy.stats.rv_discrete"><tt class="xref py py-obj docutils literal"><span class="pre">rv_discrete</span></tt></a>([a, b, name, badvalue, ...])</td> | |
<td>A generic discrete random variable class meant for subclassing.</td> | |
</tr> | |
</tbody> | |
</table> | |
<div class="section" id="continuous-distributions"> | |
<h2>Continuous distributions<a class="headerlink" href="#continuous-distributions" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.alpha.html#scipy.stats.alpha" title="scipy.stats.alpha"><tt class="xref py py-obj docutils literal"><span class="pre">alpha</span></tt></a></td> | |
<td>An alpha continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.anglit.html#scipy.stats.anglit" title="scipy.stats.anglit"><tt class="xref py py-obj docutils literal"><span class="pre">anglit</span></tt></a></td> | |
<td>An anglit continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.arcsine.html#scipy.stats.arcsine" title="scipy.stats.arcsine"><tt class="xref py py-obj docutils literal"><span class="pre">arcsine</span></tt></a></td> | |
<td>An arcsine continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.beta.html#scipy.stats.beta" title="scipy.stats.beta"><tt class="xref py py-obj docutils literal"><span class="pre">beta</span></tt></a></td> | |
<td>A beta continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.betaprime.html#scipy.stats.betaprime" title="scipy.stats.betaprime"><tt class="xref py py-obj docutils literal"><span class="pre">betaprime</span></tt></a></td> | |
<td>A beta prime continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.bradford.html#scipy.stats.bradford" title="scipy.stats.bradford"><tt class="xref py py-obj docutils literal"><span class="pre">bradford</span></tt></a></td> | |
<td>A Bradford continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.burr.html#scipy.stats.burr" title="scipy.stats.burr"><tt class="xref py py-obj docutils literal"><span class="pre">burr</span></tt></a></td> | |
<td>A Burr continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.cauchy.html#scipy.stats.cauchy" title="scipy.stats.cauchy"><tt class="xref py py-obj docutils literal"><span class="pre">cauchy</span></tt></a></td> | |
<td>A Cauchy continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.chi.html#scipy.stats.chi" title="scipy.stats.chi"><tt class="xref py py-obj docutils literal"><span class="pre">chi</span></tt></a></td> | |
<td>A chi continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.chi2.html#scipy.stats.chi2" title="scipy.stats.chi2"><tt class="xref py py-obj docutils literal"><span class="pre">chi2</span></tt></a></td> | |
<td>A chi-squared continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.cosine.html#scipy.stats.cosine" title="scipy.stats.cosine"><tt class="xref py py-obj docutils literal"><span class="pre">cosine</span></tt></a></td> | |
<td>A cosine continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.dgamma.html#scipy.stats.dgamma" title="scipy.stats.dgamma"><tt class="xref py py-obj docutils literal"><span class="pre">dgamma</span></tt></a></td> | |
<td>A double gamma continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.dweibull.html#scipy.stats.dweibull" title="scipy.stats.dweibull"><tt class="xref py py-obj docutils literal"><span class="pre">dweibull</span></tt></a></td> | |
<td>A double Weibull continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.erlang.html#scipy.stats.erlang" title="scipy.stats.erlang"><tt class="xref py py-obj docutils literal"><span class="pre">erlang</span></tt></a></td> | |
<td>An Erlang continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.expon.html#scipy.stats.expon" title="scipy.stats.expon"><tt class="xref py py-obj docutils literal"><span class="pre">expon</span></tt></a></td> | |
<td>An exponential continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.exponnorm.html#scipy.stats.exponnorm" title="scipy.stats.exponnorm"><tt class="xref py py-obj docutils literal"><span class="pre">exponnorm</span></tt></a></td> | |
<td>An exponentially modified Normal continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.exponweib.html#scipy.stats.exponweib" title="scipy.stats.exponweib"><tt class="xref py py-obj docutils literal"><span class="pre">exponweib</span></tt></a></td> | |
<td>An exponentiated Weibull continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.exponpow.html#scipy.stats.exponpow" title="scipy.stats.exponpow"><tt class="xref py py-obj docutils literal"><span class="pre">exponpow</span></tt></a></td> | |
<td>An exponential power continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.f.html#scipy.stats.f" title="scipy.stats.f"><tt class="xref py py-obj docutils literal"><span class="pre">f</span></tt></a></td> | |
<td>An F continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.fatiguelife.html#scipy.stats.fatiguelife" title="scipy.stats.fatiguelife"><tt class="xref py py-obj docutils literal"><span class="pre">fatiguelife</span></tt></a></td> | |
<td>A fatigue-life (Birnbaum-Saunders) continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.fisk.html#scipy.stats.fisk" title="scipy.stats.fisk"><tt class="xref py py-obj docutils literal"><span class="pre">fisk</span></tt></a></td> | |
<td>A Fisk continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.foldcauchy.html#scipy.stats.foldcauchy" title="scipy.stats.foldcauchy"><tt class="xref py py-obj docutils literal"><span class="pre">foldcauchy</span></tt></a></td> | |
<td>A folded Cauchy continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.foldnorm.html#scipy.stats.foldnorm" title="scipy.stats.foldnorm"><tt class="xref py py-obj docutils literal"><span class="pre">foldnorm</span></tt></a></td> | |
<td>A folded normal continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.frechet_r.html#scipy.stats.frechet_r" title="scipy.stats.frechet_r"><tt class="xref py py-obj docutils literal"><span class="pre">frechet_r</span></tt></a></td> | |
<td>A Frechet right (or Weibull minimum) continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.frechet_l.html#scipy.stats.frechet_l" title="scipy.stats.frechet_l"><tt class="xref py py-obj docutils literal"><span class="pre">frechet_l</span></tt></a></td> | |
<td>A Frechet left (or Weibull maximum) continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.genlogistic.html#scipy.stats.genlogistic" title="scipy.stats.genlogistic"><tt class="xref py py-obj docutils literal"><span class="pre">genlogistic</span></tt></a></td> | |
<td>A generalized logistic continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.gennorm.html#scipy.stats.gennorm" title="scipy.stats.gennorm"><tt class="xref py py-obj docutils literal"><span class="pre">gennorm</span></tt></a></td> | |
<td>A generalized normal continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.genpareto.html#scipy.stats.genpareto" title="scipy.stats.genpareto"><tt class="xref py py-obj docutils literal"><span class="pre">genpareto</span></tt></a></td> | |
<td>A generalized Pareto continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.genexpon.html#scipy.stats.genexpon" title="scipy.stats.genexpon"><tt class="xref py py-obj docutils literal"><span class="pre">genexpon</span></tt></a></td> | |
<td>A generalized exponential continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.genextreme.html#scipy.stats.genextreme" title="scipy.stats.genextreme"><tt class="xref py py-obj docutils literal"><span class="pre">genextreme</span></tt></a></td> | |
<td>A generalized extreme value continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.gausshyper.html#scipy.stats.gausshyper" title="scipy.stats.gausshyper"><tt class="xref py py-obj docutils literal"><span class="pre">gausshyper</span></tt></a></td> | |
<td>A Gauss hypergeometric continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.gamma.html#scipy.stats.gamma" title="scipy.stats.gamma"><tt class="xref py py-obj docutils literal"><span class="pre">gamma</span></tt></a></td> | |
<td>A gamma continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.gengamma.html#scipy.stats.gengamma" title="scipy.stats.gengamma"><tt class="xref py py-obj docutils literal"><span class="pre">gengamma</span></tt></a></td> | |
<td>A generalized gamma continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.genhalflogistic.html#scipy.stats.genhalflogistic" title="scipy.stats.genhalflogistic"><tt class="xref py py-obj docutils literal"><span class="pre">genhalflogistic</span></tt></a></td> | |
<td>A generalized half-logistic continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.gilbrat.html#scipy.stats.gilbrat" title="scipy.stats.gilbrat"><tt class="xref py py-obj docutils literal"><span class="pre">gilbrat</span></tt></a></td> | |
<td>A Gilbrat continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.gompertz.html#scipy.stats.gompertz" title="scipy.stats.gompertz"><tt class="xref py py-obj docutils literal"><span class="pre">gompertz</span></tt></a></td> | |
<td>A Gompertz (or truncated Gumbel) continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r" title="scipy.stats.gumbel_r"><tt class="xref py py-obj docutils literal"><span class="pre">gumbel_r</span></tt></a></td> | |
<td>A right-skewed Gumbel continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l" title="scipy.stats.gumbel_l"><tt class="xref py py-obj docutils literal"><span class="pre">gumbel_l</span></tt></a></td> | |
<td>A left-skewed Gumbel continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.halfcauchy.html#scipy.stats.halfcauchy" title="scipy.stats.halfcauchy"><tt class="xref py py-obj docutils literal"><span class="pre">halfcauchy</span></tt></a></td> | |
<td>A Half-Cauchy continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.halflogistic.html#scipy.stats.halflogistic" title="scipy.stats.halflogistic"><tt class="xref py py-obj docutils literal"><span class="pre">halflogistic</span></tt></a></td> | |
<td>A half-logistic continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.halfnorm.html#scipy.stats.halfnorm" title="scipy.stats.halfnorm"><tt class="xref py py-obj docutils literal"><span class="pre">halfnorm</span></tt></a></td> | |
<td>A half-normal continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.halfgennorm.html#scipy.stats.halfgennorm" title="scipy.stats.halfgennorm"><tt class="xref py py-obj docutils literal"><span class="pre">halfgennorm</span></tt></a></td> | |
<td>The upper half of a generalized normal continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.hypsecant.html#scipy.stats.hypsecant" title="scipy.stats.hypsecant"><tt class="xref py py-obj docutils literal"><span class="pre">hypsecant</span></tt></a></td> | |
<td>A hyperbolic secant continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.invgamma.html#scipy.stats.invgamma" title="scipy.stats.invgamma"><tt class="xref py py-obj docutils literal"><span class="pre">invgamma</span></tt></a></td> | |
<td>An inverted gamma continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.invgauss.html#scipy.stats.invgauss" title="scipy.stats.invgauss"><tt class="xref py py-obj docutils literal"><span class="pre">invgauss</span></tt></a></td> | |
<td>An inverse Gaussian continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.invweibull.html#scipy.stats.invweibull" title="scipy.stats.invweibull"><tt class="xref py py-obj docutils literal"><span class="pre">invweibull</span></tt></a></td> | |
<td>An inverted Weibull continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.johnsonsb.html#scipy.stats.johnsonsb" title="scipy.stats.johnsonsb"><tt class="xref py py-obj docutils literal"><span class="pre">johnsonsb</span></tt></a></td> | |
<td>A Johnson SB continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.johnsonsu.html#scipy.stats.johnsonsu" title="scipy.stats.johnsonsu"><tt class="xref py py-obj docutils literal"><span class="pre">johnsonsu</span></tt></a></td> | |
<td>A Johnson SU continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.ksone.html#scipy.stats.ksone" title="scipy.stats.ksone"><tt class="xref py py-obj docutils literal"><span class="pre">ksone</span></tt></a></td> | |
<td>General Kolmogorov-Smirnov one-sided test.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.kstwobign.html#scipy.stats.kstwobign" title="scipy.stats.kstwobign"><tt class="xref py py-obj docutils literal"><span class="pre">kstwobign</span></tt></a></td> | |
<td>Kolmogorov-Smirnov two-sided test for large N.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.laplace.html#scipy.stats.laplace" title="scipy.stats.laplace"><tt class="xref py py-obj docutils literal"><span class="pre">laplace</span></tt></a></td> | |
<td>A Laplace continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.logistic.html#scipy.stats.logistic" title="scipy.stats.logistic"><tt class="xref py py-obj docutils literal"><span class="pre">logistic</span></tt></a></td> | |
<td>A logistic (or Sech-squared) continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.loggamma.html#scipy.stats.loggamma" title="scipy.stats.loggamma"><tt class="xref py py-obj docutils literal"><span class="pre">loggamma</span></tt></a></td> | |
<td>A log gamma continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.loglaplace.html#scipy.stats.loglaplace" title="scipy.stats.loglaplace"><tt class="xref py py-obj docutils literal"><span class="pre">loglaplace</span></tt></a></td> | |
<td>A log-Laplace continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.lognorm.html#scipy.stats.lognorm" title="scipy.stats.lognorm"><tt class="xref py py-obj docutils literal"><span class="pre">lognorm</span></tt></a></td> | |
<td>A lognormal continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.lomax.html#scipy.stats.lomax" title="scipy.stats.lomax"><tt class="xref py py-obj docutils literal"><span class="pre">lomax</span></tt></a></td> | |
<td>A Lomax (Pareto of the second kind) continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.maxwell.html#scipy.stats.maxwell" title="scipy.stats.maxwell"><tt class="xref py py-obj docutils literal"><span class="pre">maxwell</span></tt></a></td> | |
<td>A Maxwell continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.mielke.html#scipy.stats.mielke" title="scipy.stats.mielke"><tt class="xref py py-obj docutils literal"><span class="pre">mielke</span></tt></a></td> | |
<td>A Mielke’s Beta-Kappa continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.nakagami.html#scipy.stats.nakagami" title="scipy.stats.nakagami"><tt class="xref py py-obj docutils literal"><span class="pre">nakagami</span></tt></a></td> | |
<td>A Nakagami continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.ncx2.html#scipy.stats.ncx2" title="scipy.stats.ncx2"><tt class="xref py py-obj docutils literal"><span class="pre">ncx2</span></tt></a></td> | |
<td>A non-central chi-squared continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.ncf.html#scipy.stats.ncf" title="scipy.stats.ncf"><tt class="xref py py-obj docutils literal"><span class="pre">ncf</span></tt></a></td> | |
<td>A non-central F distribution continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.nct.html#scipy.stats.nct" title="scipy.stats.nct"><tt class="xref py py-obj docutils literal"><span class="pre">nct</span></tt></a></td> | |
<td>A non-central Student’s T continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.norm.html#scipy.stats.norm" title="scipy.stats.norm"><tt class="xref py py-obj docutils literal"><span class="pre">norm</span></tt></a></td> | |
<td>A normal continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.pareto.html#scipy.stats.pareto" title="scipy.stats.pareto"><tt class="xref py py-obj docutils literal"><span class="pre">pareto</span></tt></a></td> | |
<td>A Pareto continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.pearson3.html#scipy.stats.pearson3" title="scipy.stats.pearson3"><tt class="xref py py-obj docutils literal"><span class="pre">pearson3</span></tt></a></td> | |
<td>A pearson type III continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.powerlaw.html#scipy.stats.powerlaw" title="scipy.stats.powerlaw"><tt class="xref py py-obj docutils literal"><span class="pre">powerlaw</span></tt></a></td> | |
<td>A power-function continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.powerlognorm.html#scipy.stats.powerlognorm" title="scipy.stats.powerlognorm"><tt class="xref py py-obj docutils literal"><span class="pre">powerlognorm</span></tt></a></td> | |
<td>A power log-normal continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.powernorm.html#scipy.stats.powernorm" title="scipy.stats.powernorm"><tt class="xref py py-obj docutils literal"><span class="pre">powernorm</span></tt></a></td> | |
<td>A power normal continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.rdist.html#scipy.stats.rdist" title="scipy.stats.rdist"><tt class="xref py py-obj docutils literal"><span class="pre">rdist</span></tt></a></td> | |
<td>An R-distributed continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.reciprocal.html#scipy.stats.reciprocal" title="scipy.stats.reciprocal"><tt class="xref py py-obj docutils literal"><span class="pre">reciprocal</span></tt></a></td> | |
<td>A reciprocal continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.rayleigh.html#scipy.stats.rayleigh" title="scipy.stats.rayleigh"><tt class="xref py py-obj docutils literal"><span class="pre">rayleigh</span></tt></a></td> | |
<td>A Rayleigh continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.rice.html#scipy.stats.rice" title="scipy.stats.rice"><tt class="xref py py-obj docutils literal"><span class="pre">rice</span></tt></a></td> | |
<td>A Rice continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.recipinvgauss.html#scipy.stats.recipinvgauss" title="scipy.stats.recipinvgauss"><tt class="xref py py-obj docutils literal"><span class="pre">recipinvgauss</span></tt></a></td> | |
<td>A reciprocal inverse Gaussian continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.semicircular.html#scipy.stats.semicircular" title="scipy.stats.semicircular"><tt class="xref py py-obj docutils literal"><span class="pre">semicircular</span></tt></a></td> | |
<td>A semicircular continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.t.html#scipy.stats.t" title="scipy.stats.t"><tt class="xref py py-obj docutils literal"><span class="pre">t</span></tt></a></td> | |
<td>A Student’s T continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.triang.html#scipy.stats.triang" title="scipy.stats.triang"><tt class="xref py py-obj docutils literal"><span class="pre">triang</span></tt></a></td> | |
<td>A triangular continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.truncexpon.html#scipy.stats.truncexpon" title="scipy.stats.truncexpon"><tt class="xref py py-obj docutils literal"><span class="pre">truncexpon</span></tt></a></td> | |
<td>A truncated exponential continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.truncnorm.html#scipy.stats.truncnorm" title="scipy.stats.truncnorm"><tt class="xref py py-obj docutils literal"><span class="pre">truncnorm</span></tt></a></td> | |
<td>A truncated normal continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.tukeylambda.html#scipy.stats.tukeylambda" title="scipy.stats.tukeylambda"><tt class="xref py py-obj docutils literal"><span class="pre">tukeylambda</span></tt></a></td> | |
<td>A Tukey-Lamdba continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.uniform.html#scipy.stats.uniform" title="scipy.stats.uniform"><tt class="xref py py-obj docutils literal"><span class="pre">uniform</span></tt></a></td> | |
<td>A uniform continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.vonmises.html#scipy.stats.vonmises" title="scipy.stats.vonmises"><tt class="xref py py-obj docutils literal"><span class="pre">vonmises</span></tt></a></td> | |
<td>A Von Mises continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.wald.html#scipy.stats.wald" title="scipy.stats.wald"><tt class="xref py py-obj docutils literal"><span class="pre">wald</span></tt></a></td> | |
<td>A Wald continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min" title="scipy.stats.weibull_min"><tt class="xref py py-obj docutils literal"><span class="pre">weibull_min</span></tt></a></td> | |
<td>A Frechet right (or Weibull minimum) continuous random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max" title="scipy.stats.weibull_max"><tt class="xref py py-obj docutils literal"><span class="pre">weibull_max</span></tt></a></td> | |
<td>A Frechet left (or Weibull maximum) continuous random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.wrapcauchy.html#scipy.stats.wrapcauchy" title="scipy.stats.wrapcauchy"><tt class="xref py py-obj docutils literal"><span class="pre">wrapcauchy</span></tt></a></td> | |
<td>A wrapped Cauchy continuous random variable.</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="multivariate-distributions"> | |
<h2>Multivariate distributions<a class="headerlink" href="#multivariate-distributions" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.multivariate_normal.html#scipy.stats.multivariate_normal" title="scipy.stats.multivariate_normal"><tt class="xref py py-obj docutils literal"><span class="pre">multivariate_normal</span></tt></a></td> | |
<td>A multivariate normal random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.dirichlet.html#scipy.stats.dirichlet" title="scipy.stats.dirichlet"><tt class="xref py py-obj docutils literal"><span class="pre">dirichlet</span></tt></a></td> | |
<td>A Dirichlet random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.wishart.html#scipy.stats.wishart" title="scipy.stats.wishart"><tt class="xref py py-obj docutils literal"><span class="pre">wishart</span></tt></a></td> | |
<td>A Wishart random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.invwishart.html#scipy.stats.invwishart" title="scipy.stats.invwishart"><tt class="xref py py-obj docutils literal"><span class="pre">invwishart</span></tt></a></td> | |
<td>An inverse Wishart random variable.</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="discrete-distributions"> | |
<h2>Discrete distributions<a class="headerlink" href="#discrete-distributions" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.bernoulli.html#scipy.stats.bernoulli" title="scipy.stats.bernoulli"><tt class="xref py py-obj docutils literal"><span class="pre">bernoulli</span></tt></a></td> | |
<td>A Bernoulli discrete random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.binom.html#scipy.stats.binom" title="scipy.stats.binom"><tt class="xref py py-obj docutils literal"><span class="pre">binom</span></tt></a></td> | |
<td>A binomial discrete random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.boltzmann.html#scipy.stats.boltzmann" title="scipy.stats.boltzmann"><tt class="xref py py-obj docutils literal"><span class="pre">boltzmann</span></tt></a></td> | |
<td>A Boltzmann (Truncated Discrete Exponential) random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.dlaplace.html#scipy.stats.dlaplace" title="scipy.stats.dlaplace"><tt class="xref py py-obj docutils literal"><span class="pre">dlaplace</span></tt></a></td> | |
<td>A Laplacian discrete random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.geom.html#scipy.stats.geom" title="scipy.stats.geom"><tt class="xref py py-obj docutils literal"><span class="pre">geom</span></tt></a></td> | |
<td>A geometric discrete random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom" title="scipy.stats.hypergeom"><tt class="xref py py-obj docutils literal"><span class="pre">hypergeom</span></tt></a></td> | |
<td>A hypergeometric discrete random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.logser.html#scipy.stats.logser" title="scipy.stats.logser"><tt class="xref py py-obj docutils literal"><span class="pre">logser</span></tt></a></td> | |
<td>A Logarithmic (Log-Series, Series) discrete random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.nbinom.html#scipy.stats.nbinom" title="scipy.stats.nbinom"><tt class="xref py py-obj docutils literal"><span class="pre">nbinom</span></tt></a></td> | |
<td>A negative binomial discrete random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.planck.html#scipy.stats.planck" title="scipy.stats.planck"><tt class="xref py py-obj docutils literal"><span class="pre">planck</span></tt></a></td> | |
<td>A Planck discrete exponential random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.poisson.html#scipy.stats.poisson" title="scipy.stats.poisson"><tt class="xref py py-obj docutils literal"><span class="pre">poisson</span></tt></a></td> | |
<td>A Poisson discrete random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.randint.html#scipy.stats.randint" title="scipy.stats.randint"><tt class="xref py py-obj docutils literal"><span class="pre">randint</span></tt></a></td> | |
<td>A uniform discrete random variable.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.skellam.html#scipy.stats.skellam" title="scipy.stats.skellam"><tt class="xref py py-obj docutils literal"><span class="pre">skellam</span></tt></a></td> | |
<td>A Skellam discrete random variable.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.zipf.html#scipy.stats.zipf" title="scipy.stats.zipf"><tt class="xref py py-obj docutils literal"><span class="pre">zipf</span></tt></a></td> | |
<td>A Zipf discrete random variable.</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="statistical-functions"> | |
<h2>Statistical functions<a class="headerlink" href="#statistical-functions" title="Permalink to this headline">¶</a></h2> | |
<p>Several of these functions have a similar version in scipy.stats.mstats | |
which work for masked arrays.</p> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.describe.html#scipy.stats.describe" title="scipy.stats.describe"><tt class="xref py py-obj docutils literal"><span class="pre">describe</span></tt></a>(a[, axis, ddof])</td> | |
<td>Computes several descriptive statistics of the passed array.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.gmean.html#scipy.stats.gmean" title="scipy.stats.gmean"><tt class="xref py py-obj docutils literal"><span class="pre">gmean</span></tt></a>(a[, axis, dtype])</td> | |
<td>Compute the geometric mean along the specified axis.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.hmean.html#scipy.stats.hmean" title="scipy.stats.hmean"><tt class="xref py py-obj docutils literal"><span class="pre">hmean</span></tt></a>(a[, axis, dtype])</td> | |
<td>Calculates the harmonic mean along the specified axis.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis" title="scipy.stats.kurtosis"><tt class="xref py py-obj docutils literal"><span class="pre">kurtosis</span></tt></a>(a[, axis, fisher, bias])</td> | |
<td>Computes the kurtosis (Fisher or Pearson) of a dataset.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.kurtosistest.html#scipy.stats.kurtosistest" title="scipy.stats.kurtosistest"><tt class="xref py py-obj docutils literal"><span class="pre">kurtosistest</span></tt></a>(a[, axis])</td> | |
<td>Tests whether a dataset has normal kurtosis</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.mode.html#scipy.stats.mode" title="scipy.stats.mode"><tt class="xref py py-obj docutils literal"><span class="pre">mode</span></tt></a>(a[, axis])</td> | |
<td>Returns an array of the modal (most common) value in the passed array.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.moment.html#scipy.stats.moment" title="scipy.stats.moment"><tt class="xref py py-obj docutils literal"><span class="pre">moment</span></tt></a>(a[, moment, axis])</td> | |
<td>Calculates the nth moment about the mean for a sample.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.normaltest.html#scipy.stats.normaltest" title="scipy.stats.normaltest"><tt class="xref py py-obj docutils literal"><span class="pre">normaltest</span></tt></a>(a[, axis])</td> | |
<td>Tests whether a sample differs from a normal distribution.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.skew.html#scipy.stats.skew" title="scipy.stats.skew"><tt class="xref py py-obj docutils literal"><span class="pre">skew</span></tt></a>(a[, axis, bias])</td> | |
<td>Computes the skewness of a data set.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.skewtest.html#scipy.stats.skewtest" title="scipy.stats.skewtest"><tt class="xref py py-obj docutils literal"><span class="pre">skewtest</span></tt></a>(a[, axis])</td> | |
<td>Tests whether the skew is different from the normal distribution.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.kstat.html#scipy.stats.kstat" title="scipy.stats.kstat"><tt class="xref py py-obj docutils literal"><span class="pre">kstat</span></tt></a>(data[, n])</td> | |
<td>Return the nth k-statistic (1<=n<=4 so far).</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.kstatvar.html#scipy.stats.kstatvar" title="scipy.stats.kstatvar"><tt class="xref py py-obj docutils literal"><span class="pre">kstatvar</span></tt></a>(data[, n])</td> | |
<td>Returns an unbiased estimator of the variance of the k-statistic.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.tmean.html#scipy.stats.tmean" title="scipy.stats.tmean"><tt class="xref py py-obj docutils literal"><span class="pre">tmean</span></tt></a>(a[, limits, inclusive])</td> | |
<td>Compute the trimmed mean.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.tvar.html#scipy.stats.tvar" title="scipy.stats.tvar"><tt class="xref py py-obj docutils literal"><span class="pre">tvar</span></tt></a>(a[, limits, inclusive])</td> | |
<td>Compute the trimmed variance</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.tmin.html#scipy.stats.tmin" title="scipy.stats.tmin"><tt class="xref py py-obj docutils literal"><span class="pre">tmin</span></tt></a>(a[, lowerlimit, axis, inclusive])</td> | |
<td>Compute the trimmed minimum</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.tmax.html#scipy.stats.tmax" title="scipy.stats.tmax"><tt class="xref py py-obj docutils literal"><span class="pre">tmax</span></tt></a>(a[, upperlimit, axis, inclusive])</td> | |
<td>Compute the trimmed maximum</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.tstd.html#scipy.stats.tstd" title="scipy.stats.tstd"><tt class="xref py py-obj docutils literal"><span class="pre">tstd</span></tt></a>(a[, limits, inclusive])</td> | |
<td>Compute the trimmed sample standard deviation</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.tsem.html#scipy.stats.tsem" title="scipy.stats.tsem"><tt class="xref py py-obj docutils literal"><span class="pre">tsem</span></tt></a>(a[, limits, inclusive])</td> | |
<td>Compute the trimmed standard error of the mean.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.nanmean.html#scipy.stats.nanmean" title="scipy.stats.nanmean"><tt class="xref py py-obj docutils literal"><span class="pre">nanmean</span></tt></a>(*args, **kwds)</td> | |
<td><a class="reference internal" href="generated/scipy.stats.nanmean.html#scipy.stats.nanmean" title="scipy.stats.nanmean"><tt class="xref py py-obj docutils literal"><span class="pre">nanmean</span></tt></a> is deprecated!</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.nanstd.html#scipy.stats.nanstd" title="scipy.stats.nanstd"><tt class="xref py py-obj docutils literal"><span class="pre">nanstd</span></tt></a>(*args, **kwds)</td> | |
<td><a class="reference internal" href="generated/scipy.stats.nanstd.html#scipy.stats.nanstd" title="scipy.stats.nanstd"><tt class="xref py py-obj docutils literal"><span class="pre">nanstd</span></tt></a> is deprecated!</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.nanmedian.html#scipy.stats.nanmedian" title="scipy.stats.nanmedian"><tt class="xref py py-obj docutils literal"><span class="pre">nanmedian</span></tt></a>(*args, **kwds)</td> | |
<td><a class="reference internal" href="generated/scipy.stats.nanmedian.html#scipy.stats.nanmedian" title="scipy.stats.nanmedian"><tt class="xref py py-obj docutils literal"><span class="pre">nanmedian</span></tt></a> is deprecated!</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.variation.html#scipy.stats.variation" title="scipy.stats.variation"><tt class="xref py py-obj docutils literal"><span class="pre">variation</span></tt></a>(a[, axis])</td> | |
<td>Computes the coefficient of variation, the ratio of the biased standard deviation to the mean.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.cumfreq.html#scipy.stats.cumfreq" title="scipy.stats.cumfreq"><tt class="xref py py-obj docutils literal"><span class="pre">cumfreq</span></tt></a>(a[, numbins, defaultreallimits, weights])</td> | |
<td>Returns a cumulative frequency histogram, using the histogram function.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.histogram2.html#scipy.stats.histogram2" title="scipy.stats.histogram2"><tt class="xref py py-obj docutils literal"><span class="pre">histogram2</span></tt></a>(*args, **kwds)</td> | |
<td><a class="reference internal" href="generated/scipy.stats.histogram2.html#scipy.stats.histogram2" title="scipy.stats.histogram2"><tt class="xref py py-obj docutils literal"><span class="pre">histogram2</span></tt></a> is deprecated!</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.histogram.html#scipy.stats.histogram" title="scipy.stats.histogram"><tt class="xref py py-obj docutils literal"><span class="pre">histogram</span></tt></a>(a[, numbins, defaultlimits, ...])</td> | |
<td>Separates the range into several bins and returns the number of instances in each bin.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.itemfreq.html#scipy.stats.itemfreq" title="scipy.stats.itemfreq"><tt class="xref py py-obj docutils literal"><span class="pre">itemfreq</span></tt></a>(a)</td> | |
<td>Returns a 2-D array of item frequencies.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.percentileofscore.html#scipy.stats.percentileofscore" title="scipy.stats.percentileofscore"><tt class="xref py py-obj docutils literal"><span class="pre">percentileofscore</span></tt></a>(a, score[, kind])</td> | |
<td>The percentile rank of a score relative to a list of scores.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile" title="scipy.stats.scoreatpercentile"><tt class="xref py py-obj docutils literal"><span class="pre">scoreatpercentile</span></tt></a>(a, per[, limit, ...])</td> | |
<td>Calculate the score at a given percentile of the input sequence.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.relfreq.html#scipy.stats.relfreq" title="scipy.stats.relfreq"><tt class="xref py py-obj docutils literal"><span class="pre">relfreq</span></tt></a>(a[, numbins, defaultreallimits, weights])</td> | |
<td>Returns a relative frequency histogram, using the histogram function.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.binned_statistic.html#scipy.stats.binned_statistic" title="scipy.stats.binned_statistic"><tt class="xref py py-obj docutils literal"><span class="pre">binned_statistic</span></tt></a>(x, values[, statistic, ...])</td> | |
<td>Compute a binned statistic for a set of data.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.binned_statistic_2d.html#scipy.stats.binned_statistic_2d" title="scipy.stats.binned_statistic_2d"><tt class="xref py py-obj docutils literal"><span class="pre">binned_statistic_2d</span></tt></a>(x, y, values[, ...])</td> | |
<td>Compute a bidimensional binned statistic for a set of data.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.binned_statistic_dd.html#scipy.stats.binned_statistic_dd" title="scipy.stats.binned_statistic_dd"><tt class="xref py py-obj docutils literal"><span class="pre">binned_statistic_dd</span></tt></a>(sample, values[, ...])</td> | |
<td>Compute a multidimensional binned statistic for a set of data.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.obrientransform.html#scipy.stats.obrientransform" title="scipy.stats.obrientransform"><tt class="xref py py-obj docutils literal"><span class="pre">obrientransform</span></tt></a>(*args)</td> | |
<td>Computes the O’Brien transform on input data (any number of arrays).</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.signaltonoise.html#scipy.stats.signaltonoise" title="scipy.stats.signaltonoise"><tt class="xref py py-obj docutils literal"><span class="pre">signaltonoise</span></tt></a>(*args, **kwds)</td> | |
<td><a class="reference internal" href="generated/scipy.stats.signaltonoise.html#scipy.stats.signaltonoise" title="scipy.stats.signaltonoise"><tt class="xref py py-obj docutils literal"><span class="pre">signaltonoise</span></tt></a> is deprecated!</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.bayes_mvs.html#scipy.stats.bayes_mvs" title="scipy.stats.bayes_mvs"><tt class="xref py py-obj docutils literal"><span class="pre">bayes_mvs</span></tt></a>(data[, alpha])</td> | |
<td>Bayesian confidence intervals for the mean, var, and std.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.mvsdist.html#scipy.stats.mvsdist" title="scipy.stats.mvsdist"><tt class="xref py py-obj docutils literal"><span class="pre">mvsdist</span></tt></a>(data)</td> | |
<td>‘Frozen’ distributions for mean, variance, and standard deviation of data.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.sem.html#scipy.stats.sem" title="scipy.stats.sem"><tt class="xref py py-obj docutils literal"><span class="pre">sem</span></tt></a>(a[, axis, ddof])</td> | |
<td>Calculates the standard error of the mean (or standard error of measurement) of the values in the input array.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.zmap.html#scipy.stats.zmap" title="scipy.stats.zmap"><tt class="xref py py-obj docutils literal"><span class="pre">zmap</span></tt></a>(scores, compare[, axis, ddof])</td> | |
<td>Calculates the relative z-scores.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.zscore.html#scipy.stats.zscore" title="scipy.stats.zscore"><tt class="xref py py-obj docutils literal"><span class="pre">zscore</span></tt></a>(a[, axis, ddof])</td> | |
<td>Calculates the z score of each value in the sample, relative to the sample mean and standard deviation.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.sigmaclip.html#scipy.stats.sigmaclip" title="scipy.stats.sigmaclip"><tt class="xref py py-obj docutils literal"><span class="pre">sigmaclip</span></tt></a>(a[, low, high])</td> | |
<td>Iterative sigma-clipping of array elements.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.threshold.html#scipy.stats.threshold" title="scipy.stats.threshold"><tt class="xref py py-obj docutils literal"><span class="pre">threshold</span></tt></a>(a[, threshmin, threshmax, newval])</td> | |
<td>Clip array to a given value.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.trimboth.html#scipy.stats.trimboth" title="scipy.stats.trimboth"><tt class="xref py py-obj docutils literal"><span class="pre">trimboth</span></tt></a>(a, proportiontocut[, axis])</td> | |
<td>Slices off a proportion of items from both ends of an array.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.trim1.html#scipy.stats.trim1" title="scipy.stats.trim1"><tt class="xref py py-obj docutils literal"><span class="pre">trim1</span></tt></a>(a, proportiontocut[, tail])</td> | |
<td>Slices off a proportion of items from ONE end of the passed array distribution.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.f_oneway.html#scipy.stats.f_oneway" title="scipy.stats.f_oneway"><tt class="xref py py-obj docutils literal"><span class="pre">f_oneway</span></tt></a>(*args)</td> | |
<td>Performs a 1-way ANOVA.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr" title="scipy.stats.pearsonr"><tt class="xref py py-obj docutils literal"><span class="pre">pearsonr</span></tt></a>(x, y)</td> | |
<td>Calculates a Pearson correlation coefficient and the p-value for testing non-correlation.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.spearmanr.html#scipy.stats.spearmanr" title="scipy.stats.spearmanr"><tt class="xref py py-obj docutils literal"><span class="pre">spearmanr</span></tt></a>(a[, b, axis])</td> | |
<td>Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr" title="scipy.stats.pointbiserialr"><tt class="xref py py-obj docutils literal"><span class="pre">pointbiserialr</span></tt></a>(x, y)</td> | |
<td>Calculates a point biserial correlation coefficient and the associated p-value.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau" title="scipy.stats.kendalltau"><tt class="xref py py-obj docutils literal"><span class="pre">kendalltau</span></tt></a>(x, y[, initial_lexsort])</td> | |
<td>Calculates Kendall’s tau, a correlation measure for ordinal data.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.linregress.html#scipy.stats.linregress" title="scipy.stats.linregress"><tt class="xref py py-obj docutils literal"><span class="pre">linregress</span></tt></a>(x[, y])</td> | |
<td>Calculate a regression line</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.theilslopes.html#scipy.stats.theilslopes" title="scipy.stats.theilslopes"><tt class="xref py py-obj docutils literal"><span class="pre">theilslopes</span></tt></a>(y[, x, alpha])</td> | |
<td>Computes the Theil-Sen estimator for a set of points (x, y).</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.ttest_1samp.html#scipy.stats.ttest_1samp" title="scipy.stats.ttest_1samp"><tt class="xref py py-obj docutils literal"><span class="pre">ttest_1samp</span></tt></a>(a, popmean[, axis])</td> | |
<td>Calculates the T-test for the mean of ONE group of scores.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.ttest_ind.html#scipy.stats.ttest_ind" title="scipy.stats.ttest_ind"><tt class="xref py py-obj docutils literal"><span class="pre">ttest_ind</span></tt></a>(a, b[, axis, equal_var])</td> | |
<td>Calculates the T-test for the means of TWO INDEPENDENT samples of scores.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.ttest_ind_from_stats.html#scipy.stats.ttest_ind_from_stats" title="scipy.stats.ttest_ind_from_stats"><tt class="xref py py-obj docutils literal"><span class="pre">ttest_ind_from_stats</span></tt></a>(mean1, std1, nobs1, ...)</td> | |
<td>T-test for means of two independent samples from descriptive statistics.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.ttest_rel.html#scipy.stats.ttest_rel" title="scipy.stats.ttest_rel"><tt class="xref py py-obj docutils literal"><span class="pre">ttest_rel</span></tt></a>(a, b[, axis])</td> | |
<td>Calculates the T-test on TWO RELATED samples of scores, a and b.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.kstest.html#scipy.stats.kstest" title="scipy.stats.kstest"><tt class="xref py py-obj docutils literal"><span class="pre">kstest</span></tt></a>(rvs, cdf[, args, N, alternative, mode])</td> | |
<td>Perform the Kolmogorov-Smirnov test for goodness of fit.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.chisquare.html#scipy.stats.chisquare" title="scipy.stats.chisquare"><tt class="xref py py-obj docutils literal"><span class="pre">chisquare</span></tt></a>(f_obs[, f_exp, ddof, axis])</td> | |
<td>Calculates a one-way chi square test.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.power_divergence.html#scipy.stats.power_divergence" title="scipy.stats.power_divergence"><tt class="xref py py-obj docutils literal"><span class="pre">power_divergence</span></tt></a>(f_obs[, f_exp, ddof, axis, ...])</td> | |
<td>Cressie-Read power divergence statistic and goodness of fit test.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp" title="scipy.stats.ks_2samp"><tt class="xref py py-obj docutils literal"><span class="pre">ks_2samp</span></tt></a>(data1, data2)</td> | |
<td>Computes the Kolmogorov-Smirnov statistic on 2 samples.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu" title="scipy.stats.mannwhitneyu"><tt class="xref py py-obj docutils literal"><span class="pre">mannwhitneyu</span></tt></a>(x, y[, use_continuity])</td> | |
<td>Computes the Mann-Whitney rank test on samples x and y.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.tiecorrect.html#scipy.stats.tiecorrect" title="scipy.stats.tiecorrect"><tt class="xref py py-obj docutils literal"><span class="pre">tiecorrect</span></tt></a>(rankvals)</td> | |
<td>Tie correction factor for ties in the Mann-Whitney U and Kruskal-Wallis H tests.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.rankdata.html#scipy.stats.rankdata" title="scipy.stats.rankdata"><tt class="xref py py-obj docutils literal"><span class="pre">rankdata</span></tt></a>(a[, method])</td> | |
<td>Assign ranks to data, dealing with ties appropriately.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.ranksums.html#scipy.stats.ranksums" title="scipy.stats.ranksums"><tt class="xref py py-obj docutils literal"><span class="pre">ranksums</span></tt></a>(x, y)</td> | |
<td>Compute the Wilcoxon rank-sum statistic for two samples.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon" title="scipy.stats.wilcoxon"><tt class="xref py py-obj docutils literal"><span class="pre">wilcoxon</span></tt></a>(x[, y, zero_method, correction])</td> | |
<td>Calculate the Wilcoxon signed-rank test.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.kruskal.html#scipy.stats.kruskal" title="scipy.stats.kruskal"><tt class="xref py py-obj docutils literal"><span class="pre">kruskal</span></tt></a>(*args)</td> | |
<td>Compute the Kruskal-Wallis H-test for independent samples</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.friedmanchisquare.html#scipy.stats.friedmanchisquare" title="scipy.stats.friedmanchisquare"><tt class="xref py py-obj docutils literal"><span class="pre">friedmanchisquare</span></tt></a>(*args)</td> | |
<td>Computes the Friedman test for repeated measurements</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.combine_pvalues.html#scipy.stats.combine_pvalues" title="scipy.stats.combine_pvalues"><tt class="xref py py-obj docutils literal"><span class="pre">combine_pvalues</span></tt></a>(pvalues[, method, weights])</td> | |
<td>Methods for combining the p-values of independent tests bearing upon the same hypothesis.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.ansari.html#scipy.stats.ansari" title="scipy.stats.ansari"><tt class="xref py py-obj docutils literal"><span class="pre">ansari</span></tt></a>(x, y)</td> | |
<td>Perform the Ansari-Bradley test for equal scale parameters</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.bartlett.html#scipy.stats.bartlett" title="scipy.stats.bartlett"><tt class="xref py py-obj docutils literal"><span class="pre">bartlett</span></tt></a>(*args)</td> | |
<td>Perform Bartlett’s test for equal variances</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.levene.html#scipy.stats.levene" title="scipy.stats.levene"><tt class="xref py py-obj docutils literal"><span class="pre">levene</span></tt></a>(*args, **kwds)</td> | |
<td>Perform Levene test for equal variances.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.shapiro.html#scipy.stats.shapiro" title="scipy.stats.shapiro"><tt class="xref py py-obj docutils literal"><span class="pre">shapiro</span></tt></a>(x[, a, reta])</td> | |
<td>Perform the Shapiro-Wilk test for normality.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.anderson.html#scipy.stats.anderson" title="scipy.stats.anderson"><tt class="xref py py-obj docutils literal"><span class="pre">anderson</span></tt></a>(x[, dist])</td> | |
<td>Anderson-Darling test for data coming from a particular distribution</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.anderson_ksamp.html#scipy.stats.anderson_ksamp" title="scipy.stats.anderson_ksamp"><tt class="xref py py-obj docutils literal"><span class="pre">anderson_ksamp</span></tt></a>(samples[, midrank])</td> | |
<td>The Anderson-Darling test for k-samples.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.binom_test.html#scipy.stats.binom_test" title="scipy.stats.binom_test"><tt class="xref py py-obj docutils literal"><span class="pre">binom_test</span></tt></a>(x[, n, p])</td> | |
<td>Perform a test that the probability of success is p.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.fligner.html#scipy.stats.fligner" title="scipy.stats.fligner"><tt class="xref py py-obj docutils literal"><span class="pre">fligner</span></tt></a>(*args, **kwds)</td> | |
<td>Perform Fligner’s test for equal variances.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.median_test.html#scipy.stats.median_test" title="scipy.stats.median_test"><tt class="xref py py-obj docutils literal"><span class="pre">median_test</span></tt></a>(*args, **kwds)</td> | |
<td>Mood’s median test.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.mood.html#scipy.stats.mood" title="scipy.stats.mood"><tt class="xref py py-obj docutils literal"><span class="pre">mood</span></tt></a>(x, y[, axis])</td> | |
<td>Perform Mood’s test for equal scale parameters.</td> | |
</tr> | |
</tbody> | |
</table> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.boxcox.html#scipy.stats.boxcox" title="scipy.stats.boxcox"><tt class="xref py py-obj docutils literal"><span class="pre">boxcox</span></tt></a>(x[, lmbda, alpha])</td> | |
<td>Return a positive dataset transformed by a Box-Cox power transformation.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.boxcox_normmax.html#scipy.stats.boxcox_normmax" title="scipy.stats.boxcox_normmax"><tt class="xref py py-obj docutils literal"><span class="pre">boxcox_normmax</span></tt></a>(x[, brack, method])</td> | |
<td>Compute optimal Box-Cox transform parameter for input data.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.boxcox_llf.html#scipy.stats.boxcox_llf" title="scipy.stats.boxcox_llf"><tt class="xref py py-obj docutils literal"><span class="pre">boxcox_llf</span></tt></a>(lmb, data)</td> | |
<td>The boxcox log-likelihood function.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.entropy.html#scipy.stats.entropy" title="scipy.stats.entropy"><tt class="xref py py-obj docutils literal"><span class="pre">entropy</span></tt></a>(pk[, qk, base])</td> | |
<td>Calculate the entropy of a distribution for given probability values.</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="circular-statistical-functions"> | |
<h2>Circular statistical functions<a class="headerlink" href="#circular-statistical-functions" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.circmean.html#scipy.stats.circmean" title="scipy.stats.circmean"><tt class="xref py py-obj docutils literal"><span class="pre">circmean</span></tt></a>(samples[, high, low, axis])</td> | |
<td>Compute the circular mean for samples in a range.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.circvar.html#scipy.stats.circvar" title="scipy.stats.circvar"><tt class="xref py py-obj docutils literal"><span class="pre">circvar</span></tt></a>(samples[, high, low, axis])</td> | |
<td>Compute the circular variance for samples assumed to be in a range</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.circstd.html#scipy.stats.circstd" title="scipy.stats.circstd"><tt class="xref py py-obj docutils literal"><span class="pre">circstd</span></tt></a>(samples[, high, low, axis])</td> | |
<td>Compute the circular standard deviation for samples assumed to be in the range [low to high].</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="contingency-table-functions"> | |
<h2>Contingency table functions<a class="headerlink" href="#contingency-table-functions" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.chi2_contingency.html#scipy.stats.chi2_contingency" title="scipy.stats.chi2_contingency"><tt class="xref py py-obj docutils literal"><span class="pre">chi2_contingency</span></tt></a>(observed[, correction, <a href="#id1"><span class="problematic" id="id2">lambda_</span></a>])</td> | |
<td>Chi-square test of independence of variables in a contingency table.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.contingency.expected_freq.html#scipy.stats.contingency.expected_freq" title="scipy.stats.contingency.expected_freq"><tt class="xref py py-obj docutils literal"><span class="pre">contingency.expected_freq</span></tt></a>(observed)</td> | |
<td>Compute the expected frequencies from a contingency table.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.contingency.margins.html#scipy.stats.contingency.margins" title="scipy.stats.contingency.margins"><tt class="xref py py-obj docutils literal"><span class="pre">contingency.margins</span></tt></a>(a)</td> | |
<td>Return a list of the marginal sums of the array <em class="xref py py-obj">a</em>.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact" title="scipy.stats.fisher_exact"><tt class="xref py py-obj docutils literal"><span class="pre">fisher_exact</span></tt></a>(table[, alternative])</td> | |
<td>Performs a Fisher exact test on a 2x2 contingency table.</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="plot-tests"> | |
<h2>Plot-tests<a class="headerlink" href="#plot-tests" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.ppcc_max.html#scipy.stats.ppcc_max" title="scipy.stats.ppcc_max"><tt class="xref py py-obj docutils literal"><span class="pre">ppcc_max</span></tt></a>(x[, brack, dist])</td> | |
<td>Returns the shape parameter that maximizes the probability plot correlation coefficient for the given data to a one-parameter family of distributions.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.ppcc_plot.html#scipy.stats.ppcc_plot" title="scipy.stats.ppcc_plot"><tt class="xref py py-obj docutils literal"><span class="pre">ppcc_plot</span></tt></a>(x, a, b[, dist, plot, N])</td> | |
<td>Calculate and optionally plot probability plot correlation coefficient.</td> | |
</tr> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.probplot.html#scipy.stats.probplot" title="scipy.stats.probplot"><tt class="xref py py-obj docutils literal"><span class="pre">probplot</span></tt></a>(x[, sparams, dist, fit, plot])</td> | |
<td>Calculate quantiles for a probability plot, and optionally show the plot.</td> | |
</tr> | |
<tr class="row-even"><td><a class="reference internal" href="generated/scipy.stats.boxcox_normplot.html#scipy.stats.boxcox_normplot" title="scipy.stats.boxcox_normplot"><tt class="xref py py-obj docutils literal"><span class="pre">boxcox_normplot</span></tt></a>(x, la, lb[, plot, N])</td> | |
<td>Compute parameters for a Box-Cox normality plot, optionally show it.</td> | |
</tr> | |
</tbody> | |
</table> | |
</div> | |
<div class="section" id="masked-statistics-functions"> | |
<h2>Masked statistics functions<a class="headerlink" href="#masked-statistics-functions" title="Permalink to this headline">¶</a></h2> | |
<div class="toctree-wrapper compound"> | |
<ul> | |
<li class="toctree-l1"><a class="reference internal" href="stats.mstats.html">Statistical functions for masked arrays (<tt class="docutils literal"><span class="pre">scipy.stats.mstats</span></tt>)</a><ul> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.argstoarray.html">scipy.stats.mstats.argstoarray</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.betai.html">scipy.stats.mstats.betai</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.chisquare.html">scipy.stats.mstats.chisquare</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.count_tied_groups.html">scipy.stats.mstats.count_tied_groups</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.describe.html">scipy.stats.mstats.describe</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.f_oneway.html">scipy.stats.mstats.f_oneway</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.f_value_wilks_lambda.html">scipy.stats.mstats.f_value_wilks_lambda</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.find_repeats.html">scipy.stats.mstats.find_repeats</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.friedmanchisquare.html">scipy.stats.mstats.friedmanchisquare</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.kendalltau.html">scipy.stats.mstats.kendalltau</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.kendalltau_seasonal.html">scipy.stats.mstats.kendalltau_seasonal</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.kruskalwallis.html">scipy.stats.mstats.kruskalwallis</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.ks_twosamp.html">scipy.stats.mstats.ks_twosamp</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.kurtosis.html">scipy.stats.mstats.kurtosis</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.kurtosistest.html">scipy.stats.mstats.kurtosistest</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.linregress.html">scipy.stats.mstats.linregress</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.mannwhitneyu.html">scipy.stats.mstats.mannwhitneyu</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.plotting_positions.html">scipy.stats.mstats.plotting_positions</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.mode.html">scipy.stats.mstats.mode</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.moment.html">scipy.stats.mstats.moment</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.mquantiles.html">scipy.stats.mstats.mquantiles</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.msign.html">scipy.stats.mstats.msign</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.normaltest.html">scipy.stats.mstats.normaltest</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.obrientransform.html">scipy.stats.mstats.obrientransform</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.pearsonr.html">scipy.stats.mstats.pearsonr</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.plotting_positions.html">scipy.stats.mstats.plotting_positions</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.pointbiserialr.html">scipy.stats.mstats.pointbiserialr</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.rankdata.html">scipy.stats.mstats.rankdata</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.scoreatpercentile.html">scipy.stats.mstats.scoreatpercentile</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.sem.html">scipy.stats.mstats.sem</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.signaltonoise.html">scipy.stats.mstats.signaltonoise</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.skew.html">scipy.stats.mstats.skew</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.skewtest.html">scipy.stats.mstats.skewtest</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.spearmanr.html">scipy.stats.mstats.spearmanr</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.theilslopes.html">scipy.stats.mstats.theilslopes</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.threshold.html">scipy.stats.mstats.threshold</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.tmax.html">scipy.stats.mstats.tmax</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.tmean.html">scipy.stats.mstats.tmean</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.tmin.html">scipy.stats.mstats.tmin</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.trim.html">scipy.stats.mstats.trim</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.trima.html">scipy.stats.mstats.trima</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.trimboth.html">scipy.stats.mstats.trimboth</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.trimmed_stde.html">scipy.stats.mstats.trimmed_stde</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.trimr.html">scipy.stats.mstats.trimr</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.trimtail.html">scipy.stats.mstats.trimtail</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.tsem.html">scipy.stats.mstats.tsem</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.ttest_onesamp.html">scipy.stats.mstats.ttest_onesamp</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.ttest_ind.html">scipy.stats.mstats.ttest_ind</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.ttest_onesamp.html">scipy.stats.mstats.ttest_onesamp</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.ttest_rel.html">scipy.stats.mstats.ttest_rel</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.tvar.html">scipy.stats.mstats.tvar</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.variation.html">scipy.stats.mstats.variation</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.winsorize.html">scipy.stats.mstats.winsorize</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.zmap.html">scipy.stats.mstats.zmap</a></li> | |
<li class="toctree-l2"><a class="reference internal" href="generated/scipy.stats.mstats.zscore.html">scipy.stats.mstats.zscore</a></li> | |
</ul> | |
</li> | |
</ul> | |
</div> | |
</div> | |
<div class="section" id="univariate-and-multivariate-kernel-density-estimation-scipy-stats-kde"> | |
<h2>Univariate and multivariate kernel density estimation (<tt class="xref py py-mod docutils literal"><span class="pre">scipy.stats.kde</span></tt>)<a class="headerlink" href="#univariate-and-multivariate-kernel-density-estimation-scipy-stats-kde" title="Permalink to this headline">¶</a></h2> | |
<table border="1" class="longtable docutils"> | |
<colgroup> | |
<col width="10%" /> | |
<col width="90%" /> | |
</colgroup> | |
<tbody valign="top"> | |
<tr class="row-odd"><td><a class="reference internal" href="generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde" title="scipy.stats.gaussian_kde"><tt class="xref py py-obj docutils literal"><span class="pre">gaussian_kde</span></tt></a>(dataset[, bw_method])</td> | |
<td>Representation of a kernel-density estimate using Gaussian kernels.</td> | |
</tr> | |
</tbody> | |
</table> | |
<p>For many more stat related functions install the software R and the | |
interface package rpy.</p> | |
</div> | |
</div> | |
<div class="toctree-wrapper compound"> | |
</div> | |
</div> | |
</div> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="container container-navbar-bottom"> | |
<div class="spc-navbar"> | |
</div> | |
</div> | |
<div class="container"> | |
<div class="footer"> | |
<div class="row-fluid"> | |
<ul class="inline pull-left"> | |
<li> | |
© Copyright 2008-2014, The Scipy community. | |
</li> | |
<li> | |
Last updated on Sep 23, 2015. | |
</li> | |
<li> | |
Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.2.3. | |
</li> | |
</ul> | |
</div> | |
</div> | |
</div> | |
</body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment