Last active
May 24, 2017 10:57
-
-
Save jkatagi/5b9ebee1ba027436696790e2e04f1862 to your computer and use it in GitHub Desktop.
Convert DN to Reflection using GAIN BAND (I think it's more faster than using GRASS GIS and gdal_merge.py)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env pytho3 | |
# 2017/05/24 Jin Katagi | |
# convert DN to reflectance. | |
# usage) python3 convert_DN.py | |
import subprocess | |
import os | |
import re | |
from src import tif_tools | |
def get_scene_list(input_dir): | |
""" get tif list from input_dir (helper function).""" | |
scene_list = os.listdir(input_dir) | |
# read only *.tif | |
scene_list = [f for f in scene_list if re.match(r'.*tif$', f)] | |
return scene_list | |
def calc_GAIN(input_dir, scene_name, output_dir): | |
""" calc GAIN to DN bands and save as GeoTiff. | |
Inputs: | |
input_dir (str) : path to scene_name dir. | |
scene_naem (str) : name of the input img. | |
output_dir (str) : path to output dir. | |
""" | |
# read input image and calc GAIN. | |
print("read and calc GAIN:{}".format(scene_name)) | |
band, dataset = tif_tools.tif2array(input_dir + "/" + scene_name) | |
savename=output_dir + "/" + scene_name | |
# save img | |
print("save:{}".format(scene_name)) | |
tif_tools.array2raster(savename, dataset, band, dtype="Float32") | |
def main(): | |
input_dir="/path/to/input_img/dir" | |
output_dir="./path/to/output_img/dir" | |
# make output dir. | |
subprocess.run(args=["mkdir", "-p", output_dir]) | |
# get *.tif list. | |
scene_list = get_scene_list(input_dir) | |
for scene_name in scene_list: | |
calc_GAIN(input_dir, scene_name, output_dir) | |
if __name__ == '__main__': | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment